Skip to main content

Respiration Motion State Estimation on 4D CT Rib Cage Images

  • Conference paper
  • First Online:
MultiMedia Modeling (MMM 2016)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9516))

Included in the following conference series:

  • 3034 Accesses

Abstract

Respiration motion state is an important indicator for disease diagnose in clinical practice. In this paper, we approach this problem with 4D CT rib cage images and target on identifying the end-inhalation and end-exhalation phrases. Observing that the motion of rib bones well reflect the respiration motion state, we transform this problem into a rib bone segmentation problem. Firstly, we propose a novel steerable filter enhanced level set method for rib bone segmentation. We formulate the level set segmentation problem as a variational optimization problem. To address the blurry edge issue, we enhance the image with the classic steerable filter. After that, by comparing the positions of rib bones in sequential frames, we present an criterion to determine the end-expiration and end-inspiration phrases. We validate our approach with real 4D CT rib cage images and demonstrate the effectiveness of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abdelnour, A.F., Nehmeh, S.A., Pan, T., Humm, J.L., Vernon, P., Schöder, H., Rosenzweig, K.E., Mageras, G.S., Yorke, E., Larson, S.M., et al.: Phase and amplitude binning for 4D-CT imaging. Phys. Med. Biol. 52(12), 3515 (2007)

    Article  Google Scholar 

  2. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. Comput. Vis. 22(1), 61–79 (1997)

    Article  MATH  Google Scholar 

  3. Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001)

    Article  MATH  Google Scholar 

  4. Freeman, W.T., Adelson, E.H.: The design and use of steerable filters. IEEE Trans. Pattern Anal. Mach. Intell. 13(9), 891–906 (1991)

    Article  Google Scholar 

  5. Kimmel, R., Bruckstein, A.M.: Regularized laplacian zero crossings as optimal edge integrators. Int. J. Comput. Vis. 53(3), 225–243 (2003)

    Article  Google Scholar 

  6. Li, C., Kao, C.-Y., Gore, J.C., Ding, Z.: Implicit active contours driven by local binary fitting energy. In: 2007 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2007, pp. 1–7. IEEE (2007)

    Google Scholar 

  7. Lim, F.Y., Chiam, K.-H., Mahadevan, L.: The size, shape, and dynamics of cellular blebs. EPL (Europhys. Lett.) 100(2), 28004 (2012)

    Article  Google Scholar 

  8. Norman, L.L., Brugés, J., Sengupta, K., Sens, P., Aranda-Espinoza, H.: Cell blebbing and membrane area homeostasis in spreading and retracting cells. Biophys. J. 99(6), 1726–1733 (2010)

    Article  Google Scholar 

  9. Shirato, H., Seppenwoolde, Y., Kitamura, K., Onimura, R., Shimizu, S.: Intrafractional tumor motion: lung and liver. Semin. Radiat. Oncol. 14, 10–18 (2004)

    Article  Google Scholar 

  10. Spangler, E.J., Harvey, C.W., Revalee, J.D., Sunil Kumar, P.B., Laradji, M.: Computer simulation of cytoskeleton-induced blebbing in lipid membranes. Phys. Rev. E 84(5), 051906 (2011)

    Article  Google Scholar 

  11. Werner, R., Ehrhardt, J., Schmidt, R., Handels, H.: Patient-specific finite element modeling of respiratory lung motion using 4D CT image data. Med. Phys. 36(5), 1500–1511 (2009)

    Article  Google Scholar 

  12. Yang, X., Gao, X., Tao, D., Li, X., Li, J.: An efficient MRF embedded level set method for image segmentation. IEEE Trans. Image Process. 24(1), 9–21 (2015)

    Article  MathSciNet  Google Scholar 

  13. Zhang, K., Zhang, L., Song, H., Zhou, W.: Active contours with selective local or global segmentation: a new formulation and level set method. Image Vis. Comput. 28(4), 668–676 (2010)

    Article  Google Scholar 

  14. Zhou, W., Li, H., Zhou, X.: 3D dendrite reconstruction and spine identification. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part II. LNCS, vol. 5242, pp. 18–26. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

Download references

Acknowledgement

This work was supported in part to Dr. Zhou by the Fundamental Research Funds for the Central Universities under contract No. WK2100060014 and WK2100060011 and the start-up funding from the University of Science and Technology of China under contract No. KY2100000036, and in part to Prof. Li by the National Science Foundation of China under contract No. 61272316.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Xie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Xie, C., Zhou, W., Ding, W., Li, H., Li, W. (2016). Respiration Motion State Estimation on 4D CT Rib Cage Images. In: Tian, Q., Sebe, N., Qi, GJ., Huet, B., Hong, R., Liu, X. (eds) MultiMedia Modeling. MMM 2016. Lecture Notes in Computer Science(), vol 9516. Springer, Cham. https://doi.org/10.1007/978-3-319-27671-7_68

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27671-7_68

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27670-0

  • Online ISBN: 978-3-319-27671-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics