Abstract
A huge number of outdoor user-generated videos (UGVs) are recorded daily due to the popularity of mobile intelligent devices. Managing these videos is a tough challenge in multimedia field. In this paper, we tackle this problem by performing object-of-interest (OOI) recognition in UGVs to identify semantically important regions. By leveraging geo-sensor and social data, we propose a novel framework for OOI recognition in outdoor UGVs. Firstly, the OOI acquisition is conducted to obtain an OOI frame set from UGVs. Simultaneously, the classified object set recommendation is performed to obtain a candidate category name set from social networks. Afterward, a spatial pyramid representation is deployed to describe social objects from images and OOIs from UGVs, respectively. Finally, OOIs with their annotated names are labeled in UGVs. Extensive experiments in outdoor UGVs from both Nanjing and Singapore demonstrated the competitiveness of our approach.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
We’re sorry, something doesn't seem to be working properly.
Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.
Notes
References
Zheng, Y.-T., Zhao, M., Song, Y., Adam, H.: Tour the world: building a web-scale landmark recognition engine. In: Proceedings of CVPR (2009)
Hao, J., Wang, G., Seo, B., Zimmermann, R.: Point of interest detection and visual distance estimation for sensor-rich video. IEEE T-MM 16(7), 1929–1941 (2014)
Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. In: Proceedings of CVPR (2006)
Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Proceedings of CVPR (2005)
Felzenszwalb, P.F., Girshick, R.B., McAllester, D.A., Ramanan, D.: Object detection with discriminatively trained part-based models. IEEE T-PAMI 32(9), 1627–1645 (2010)
Yang, K., Wang, M., Hua, X.-S., Yan, S., Zhang, H.-J.: Assemble new object detector with few examples. IEEE T-IP 20(12), 3341–3349 (2011)
Wang, M., Hua, X.-S., Hong, R., Tang, J., Qi, G.-J., Song, Y.: Unified video annotation via multi-graph learning. IEEE T-CSVT 19(5), 733–746 (2009)
Harzallah, H., Jurie, F., Schmid, C.: Combining efficient object localization and image classification. In: Proceedings of ICCV (2009)
Vedaldi, A., Gulshan, V., Varma, M., Zisserman, A.: Multiple kernels for object detection. In: Proceedings of ICCV (2009)
Cinbis, R.G., Verbeek, J.J., Schmid, C.: Segmentation driven object detection with fisher vectors. In: Proceedings of ICCV (2013)
Kim, S., Park, S., Kim, M.: Central object extraction for object-based image retrieval. In: Bakker, E.M., Lew, M., Huang, T.S., Sebe, N., Zhou, X.S. (eds.) CIVR 2003. LNCS, vol. 2728, pp. 39–49. Springer, Heidelberg (2003)
Zhang, D., Javed, O., Shah, M.: Video object segmentation through spatially accurate and temporally dense extraction of primary object regions. In: Proceedings of CIVR (2013)
Jiang, H., Wang, J., Yuan, Z., Liu, T., Zheng, N.: Automatic salient object segmentation based on context and shape prior. In: Proceedings of BMVC (2011)
Khuwuthyakorn, P., Robles-Kelly, A., Zhou, J.: Object of interest detection by saliency learning. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part II. LNCS, vol. 6312, pp. 636–649. Springer, Heidelberg (2010)
Margolin, R., Tal, A., Zelnik-Manor, L.: What makes a patch distinct? In: Proceedings of CVPR (2013)
Rosin, P.L.: A simple method for detecting salient regions. Pattern Recogn. 42(11), 2363–2371 (2009)
Jia, Y., Han, M.: Category-independent object-level saliency detection. In: Proceedings of ICCV (2013)
Jiang, P., Ling, H., Yu, J., Peng, J.: Salient region detection by UFO: uniqueness, focusness and objectness. In: Proceedings of ICCV (2013)
Navalpakkam, V., Itti, L.: Modeling the influence of task on attention. Vision. Res. 45(2), 205–231 (2005)
Borji, A.: Boosting bottom-up and top-down visual features for saliency estimation. In: Proceedings of CVPR (2012)
Bolch, G., Greiner, S., de Meer, H., Trivedi, K.S.: Queueing Networks and Markov Chains, 2nd edn. John Wiley, Hoboken (2006)
Kalal, Z., Mikolajczyk, K., Matas, J.: Tracking-learning-detection. IEEE T-PAMI 34(7), 1409–1422 (2012)
Zhang, L., Bian, W., Song, M., Tao, D., Liu, X.: Integrating local features into discriminative graphlets for scene classification. In: Lu, B.-L., Zhang, L., Kwok, J. (eds.) ICONIP 2011, Part III. LNCS, vol. 7064, pp. 657–666. Springer, Heidelberg (2011)
Zhang, L., Song, M., Sun, L., Liu, X., Wang, Y., Tao, D., Bu, J., Chen, C.: Spatial graphlet matching kernel for recognizing aerial image categories. In: ICPR (2012)
Zhang, L., Gao, Y., Zimmermann, R., Tian, Q., Li, X.: Fusion of multichannel local and global structural cues for photo aesthetics evaluation. IEEE T-IP 23(3), 1419–1429 (2014)
Zhang, L., Wang, M., Nie, L., Hong, L., Rui, Y., Tian, Q.: Retargeting semantically-rich photos. IEEE T-MM 17(9), 1538–1549 (2015)
Zhang, L., Gao, Y., Hong, R., Hu, Y., Ji, R., Dai, Q.: Probabilistic skimlets fusion for summarizing multiple consumer landmark videos. IEEE T-MM 17(1), 40–49 (2015)
Ay, S.A., Zimmermann, R., Kim, S.H.: Viewable scene modeling for geospatial video search. In: ACM Multimedia (2008)
Zheng, Y.-T., Zha, Z.-J., Chua, T.-S.: Research and applications on georeferenced multimedia. Multimedia Tools Appl. 51(1), 77–98 (2011)
Rodden, K., Wood, K.R.: How do people manage their digital photographs? In: ACM SIGCHI (2003)
Kentaro, T., Logan, R., Roseway, A., Anandan, P.: Geographic location tags on digital images. In: ACM Multimedia (2003)
Föckler, P., Zeidler, T., Brombach, B., Bruns, E., Bimber, O.: PhoneGuide: museum guidance supported by on-device object recognition on mobile phones. In: Proceedings of Mobile and Ubiquitous Multimedia (2005)
Gammeter, S., Gassmann, A., Bossard, L.: Server-side object recognition and client-side object tracking for mobile augmented reality. In: Proceedings of CVPR (2010)
Wang, M., Gao, Y., Ke, L., Rui, Y.: View-based discriminative probabilistic modeling for 3D object retrieval and recognition. IEEE T-IP 22(4), 1395–1407 (2013)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Xia, Y., Zhang, L., Nie, L., Geng, W. (2016). Utilizing Sensor-Social Cues to Localize Objects-of-Interest in Outdoor UGVs. In: Tian, Q., Sebe, N., Qi, GJ., Huet, B., Hong, R., Liu, X. (eds) MultiMedia Modeling. MMM 2016. Lecture Notes in Computer Science(), vol 9516. Springer, Cham. https://doi.org/10.1007/978-3-319-27671-7_8
Download citation
DOI: https://doi.org/10.1007/978-3-319-27671-7_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-27670-0
Online ISBN: 978-3-319-27671-7
eBook Packages: Computer ScienceComputer Science (R0)