Skip to main content

Single Image Super-Resolution via Convolutional Neural Network and Total Variation Regularization

  • Conference paper
  • First Online:
MultiMedia Modeling (MMM 2016)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9517))

Included in the following conference series:

Abstract

We propose a super-resolution reconstruction model based on the fusion of convolutional neural networks and regularization constraints. Our model not only takes advantage of the convolutional neural network’s prominent capability for nonlinear mapping between low-resolution and high-resolution images, but also takes the image inherent tendency to have bountiful repeated structural information into accounts. We derive our total variation regularization constraints based on the image local similarity and non-local similarity. Through coalescence of convolutional nerual network and delicately devised adaptive regularization constraints, our model yields a state-of-the-art restoration quality from a single image. Besides, our system can be expanded to tackle more low-level vision problems as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hou, H.S., Andrews, H.: Cubic splines for image interpolation and digital filtering. IEEE Trans. Acoust. Speech Signal Process. 26(6), 508–517 (1978)

    Article  MATH  Google Scholar 

  2. Irani, M., Peleg, S.: Super resolution from image sequences. In: Pattern Recognition, pp. 115–120 (1990)

    Google Scholar 

  3. Tom, B.C., Katsaggelos, A.K., Galatsanos, N.P.: Reconstruction of a high resolution image from registration and restoration of low resolution images. In: ICIP (1994)

    Google Scholar 

  4. Kaltenbacher, E., Hardie, R.C.: High resolution infrared image reconstruction using multiple, low resolution, aliased frames. In: NAECON (1996)

    Google Scholar 

  5. Hardie, R.C., Barnard, K.J., Armstrong, E.E.: Joint MAP registration and high-resolution image estimation using a sequence of undersampled images. ICIP 6(16), 1621–1633 (1997)

    Google Scholar 

  6. Schultz, R.R., Stevenson, R.L.: Extraction of high-resolution frames from video sequences. ICIP 5(6), 996–1011 (1996)

    Google Scholar 

  7. Chung, J., Haber, E., Nagy, J.: Numerical methods for coupled superresolution. Inverse Prob. 22(4), 1261–1272 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  8. Tom, B.C., Katsaggelos, A.K.: Reconstruction of a high-resolution image by simultaneous registration, restoration, and interpolation of low-resolution images. In: ICIP (1995)

    Google Scholar 

  9. Michael, E.T., Christopher M.B.: Bayesian image superresolution. In: Proceedings of Advances in Neural Information Proceeding Systems, pp. 1279–1286 (2003)

    Google Scholar 

  10. Freeman, W.T., Jones, T.R., Pasztor, E.C.: Example-based super-resolution. Comput. Graphics Appl. 22(2), 56–65 (2002)

    Article  Google Scholar 

  11. Sun, J., Zheng, N.N., Tao, H., Shum, H.Y.: Image hallucination with primal sketch priors. In: CVPR (2003)

    Google Scholar 

  12. Wang, Q., Tang, X., Shum, H.: Patch based blind image super resolution. In: ICCV (2005)

    Google Scholar 

  13. Chang, H., Yeung, D.Y., Xiong, Y.: Super-resolution through neighbor embedding. In: CVPR (2004)

    Google Scholar 

  14. Yang, J., Wright, J., Huang, T., Ma, Y.: Image super-resolution as sparse representation of raw image patches. In: CVPR (2008)

    Google Scholar 

  15. Nadir, V., Hinton G.E.: Rectified linear units improve restricted Boltzmann machines. In: ICML, pp. 807–814 (2010)

    Google Scholar 

  16. Lan, G.: An optimal method for stochastic convex optimization. Technical report, Georgia Institute of Technology (2009)

    Google Scholar 

  17. Lecun, Y., Bottou, L., Bengio Y., Haffner: Gradient-based learning applied to document recognition. In: Proceedings of the IEEE, vol. 86, no.11, pp. 2278-2324 (1998)

    Google Scholar 

  18. Takeda, H., Farsiu, S., Milanfar, P.: kernel regression for image processing and reconstruction. Image Process. 16(2), 349–366 (2007)

    Article  MathSciNet  Google Scholar 

  19. Goldstein, T., Osher, S.: The split Bregman method for L1-regularized problems. J. SIAM J. Imaging Sci. 2(2), 323–343 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  20. Timofte, R., De V., Van Gool, L.: Anchored Neighborhood Regression for Fast Example-Based Super-Resolution. In: ICCV, pp. 1920–1927 (2013)

    Google Scholar 

  21. Dong, C., Loy, C., He K., Tang X.: Image super-resolution using deep convolutional networks. In: Pattern Analysis and Machine Intelligence (2014)

    Google Scholar 

  22. Vedaldi, A., Lenc, K.: MatConvNet - convolutional neural networks for MATLAB (2014). arXiv:1412.4564

  23. Zhang, K., Gao, X., Tao, D., Li, X.: Single image super-resolution with non-local means and steering kernel regression. Image Process. 21(11), 4544–4556 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanyun Qu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Qu, Y., Shi, C., Liu, J., Peng, L., Du, X. (2016). Single Image Super-Resolution via Convolutional Neural Network and Total Variation Regularization. In: Tian, Q., Sebe, N., Qi, GJ., Huet, B., Hong, R., Liu, X. (eds) MultiMedia Modeling. MMM 2016. Lecture Notes in Computer Science(), vol 9517. Springer, Cham. https://doi.org/10.1007/978-3-319-27674-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27674-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27673-1

  • Online ISBN: 978-3-319-27674-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics