Abstract
In this paper we present a novel large scale SLAM system that combines dense stereo vision with inertial tracking. The system divides space into a grid and efficiently allocates GPU memory only when there is surface information within a grid cell. A rolling grid approach allows the system to work for large scale outdoor SLAM. A dense visual inertial dense tracking pipeline incrementally localizes stereo cameras against the scene. The proposed system is tested with both a simulated data set and several real-life data in different lighting (illumination changes), motion (slow and fast), and weather (snow, sunny) conditions. Compared to structured light-RGBD systems the proposed system works indoors and outdoors and over large scales beyond single rooms or desktop scenes. Crucially, the system is able to leverage inertial measurements for robust tracking when visual measurements do not suffice. Results demonstrate effective operation with simulated and real data, and both indoors and outdoors under varying lighting conditions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Nüchter, A., Lingemann, K., Hertzberg, J., Surmann, H.: 6d slam3d mapping outdoor environments. J. Field Robot. 24(8–9), 699–722 (2007)
Fioraio, N., Konolige, K.: Realtime visual and point cloud slam. In: Proceedings of the RGB-D Workshop on Advanced Reasoning with Depth Cameras at Robotics: Science and Systems Conference (RSS), vol. 27 (2011)
Strasdat, H., Davison, A.J., Montiel, J., Konolige, K.: Double window optimisation for constant time visual slam. In: IEEE International Conference on Computer Vision (ICCV), pp. 2352–2359. IEEE (2011)
Newcombe, R.A., Davison, A.J., Izadi, S., Kohli, P., Hilliges, O., Shotton, J., Molyneaux, D., Hodges, S., Kim, D., Fitzgibbon, A.: Kinectfusion: Real-time dense surface mapping and tracking. In: 10th IEEE International Symposium on Mixed and augmented reality (ISMAR), pp. 127–136 (2011)
Izadi, S., Kim, D., Hilliges, O., Molyneaux, D., Newcombe, R., Kohli, P., Shotton, J., Hodges, S., Freeman, D., Davison, A. et al.: Kinectfusion: real-time 3d reconstruction and interaction using a moving depth camera. In: Proceedings of the 24th annual ACM symposium on User interface software and technology. ACM, pp. 559–568 (2011)
Keller, M., Lefloch, D., Lambers, M., Izadi, S., Weyrich, T., Kolb, A.: Real-time 3d reconstruction in dynamic scenes using point-based fusion. In: International Conference on 3D Vision-3DV 2013, pp. 1–8. IEEE (2013)
Newcombe, R.A., Lovegrove, S.J., Davison, A.J.: DTAM: Dense tracking and mapping in real-time. In IEEE International Conference on Computer Vision (ICCV), pp. 2320–2327 (2011)
Concha, A., Hussain, W., Montano, L., Civera, J.: Manhattan and piecewise-planar constraints for dense monocular mapping. In: Proceedings of Robotics: Science and Systems (RSS), (2014)
Zeng, M., Zhao, F., Zheng, J., Liu, X.: Octree-based fusion for realtime 3d reconstruction. Graph. Models 75(3), 126–136 (2013)
Steinbrucker, F., Sturm, J., Cremers, D.: Volumetric 3d mapping in real-time on a cpu. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 2021–2028. IEEE (2014)
Roth, H., Vona, M.: Moving volume kinectfusion. In BMVC, pp. 1–11 (2012)
Whelan, T., Johannsson, H., Kaess, M., Leonard, J.J., McDonald, J.: Robust tracking for real-time dense rgb-d mapping with kintinuous (2012)
Finman, R., Whelan, T., Kaess, M., Leonard, J.J.: Efficient incremental map segmentation in dense rgb-d maps. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 5488–5494. IEEE (2014)
Geiger, A., Roser, M., Urtasun, R.: Efficient large-scale stereo matching. Computer Vision-ACCV 2010, pp. 25–38. Springer, Berlin (2011)
Nießner, M., Zollhöfer, M., Izadi, S., Stamminger, M.: Real-time 3d reconstruction at scale using voxel hashing. ACM Trans. Graph. (TOG) 32(6), 169 (2013)
Sengupta, S., Greveson, E., Shahrokni, A., Torr, P.H.: Urban 3d semantic modelling using stereo vision. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 580–585. IEEE (2013)
Prisacariu, V.A., Kähler, O., Cheng, M.M., Valentin, J., Torr, P.H., Reid, I.D., Murray, D.W.: A framework for the volumetric integration of depth images (2014). arXiv:1410.0925
Baker, S., Matthews, I.: Lucas-kanade 20 years on: a unifying framework. Int. J. Comput. Vis. 56(3), 221–255 (2004)
Klose, S., Heise, P., Knoll, A.: Efficient compositional approaches for real-time robust direct visual odometry from RGB-D data. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), November 2013
Keivan, N., Sibley, G.: Asynchronous adaptive conditioning for visual-inertial slam. In: International Symposium on Experimental Robotics (ISER) (2014)
Lovegrove, S., Patron-Perez, A., Sibley, G.: Spline fusion: a continuous-time representation for visual-inertial fusion with application to rolling shutter cameras. In Proceedings of the British machine vision conference, pp. 93.1–93.12 (2013)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Ma, L., Falquez, J.M., McGuire, S., Sibley, G. (2016). Large Scale Dense Visual Inertial SLAM. In: Wettergreen, D., Barfoot, T. (eds) Field and Service Robotics. Springer Tracts in Advanced Robotics, vol 113. Springer, Cham. https://doi.org/10.1007/978-3-319-27702-8_10
Download citation
DOI: https://doi.org/10.1007/978-3-319-27702-8_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-27700-4
Online ISBN: 978-3-319-27702-8
eBook Packages: EngineeringEngineering (R0)