Skip to main content

Wrong Today, Right Tomorrow: Experience-Based Classification for Robot Perception

  • Chapter
  • First Online:
Field and Service Robotics

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 113))

Abstract

This paper is about building robots that get better through use in their particular environment, improving their perceptual abilities. We approach this from a life long learning perspective: we want the robot’s ability to detect objects in its specific operating environment to evolve and improve over time. Our idea, which we call Experience-Based Classification (EBC), builds on the well established practice of performing hard negative mining to train object detectors. Rather than cease mining for data once a detector is trained, EBC continuously seeks to learn from mistakes made while processing data observed during the robot’s operation. This process is entirely self-supervised, facilitated by spatial heuristics and the fact that we have additional scene data at our disposal in mobile robotics. In the context of autonomous driving we demonstrate considerable object detector improvement over time using 40 Km of data gathered from different driving routes at different times of year.

J. Hawke and C. Gurăau contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Benenson, R., Mathias, M., Timofte, R., Van Gool, L.: Pedestrian detection at 100 frames per second. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2903–2910 (2012)

    Google Scholar 

  2. Blei, D.M.: Probabilistic topic models. Commun. ACM 55(4), 77–84 (2012)

    Article  MathSciNet  Google Scholar 

  3. Churchill, W., Newman, P.: Experience-based navigation for long-term localisation. Int. J. Robot. Res. (IJRR) 32(14), 1645–1661 (2013)

    Article  Google Scholar 

  4. Curran, J.R., Murphy, T., Scholz, B.: Minimising semantic drift with mutual exclusion bootstrapping. In: Proceedings of the 10th Conference of the Pacific Association for Computational Linguistics, pp. 172–180 (2007)

    Google Scholar 

  5. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 886–893 (2005)

    Google Scholar 

  6. Deng, J., Dong, W., Socher, R., Li, L., Li, K., Fei-fei, L.: ImageNet: a large-scale hierarchical image database. In: Proceedings of the IEEE Conference on Computer Vision and Patter Recognition (CVPR), pp. 248–255. Miami, Florida, USA (2009)

    Google Scholar 

  7. Doersch, C., Singh, S., Gupta, A., Sivic, J., Efros, A.A.: What makes paris look like paris? ACM Trans. Graph. 31(4), 101 (2012)

    Article  Google Scholar 

  8. Dollár, P., Appel, R., Belongie, S., Perona, P.: Fast feature pyramids for object detection. PAMI (2014)

    Google Scholar 

  9. Dubout, C., Fleuret, F.: Exact acceleration of linear object detectors. In: Proceedings of the European Conference on Computer Vision (ECCV), 7574, pp. 301–311. Florence, Italy (2012)

    Google Scholar 

  10. Enzweiler, M., Hummel, M., Pfeiffer, D., Franke, U.: Efficient stixel-based object recognition. In: 2012 IEEE Intelligent Vehicles Symposium (IV), pp. 1066–1071 (2012)

    Google Scholar 

  11. Ess, A., Leibe, B., Gool, L.V.: Depth and appearance for mobile scene analysis. In: Proceedings of the International Conference on Computer Vision (ICCV) (2007)

    Google Scholar 

  12. Fan, R.E., Chang, K.W., Hsieh, C.J., Wang, X.R., Lin, C.J.: LIBLINEAR: a library for large linear classification. J. Mach. Learn. Res. (JMLR) 9, 1871–1874 (2008)

    MATH  Google Scholar 

  13. Felzenszwalb, P., Girshick, R., McAllester, D., Ramanan, D.: Object detection with discriminatively trained part-based models. IEEE Trans. Pattern Anal. Mach. Intell. 32(9), 1627–1645 (2010)

    Article  Google Scholar 

  14. Furgale, P., Barfoot, T.D.: Visual teach and repeat for long-range rover autonomy. J. Field Rob. 27(5), 534–560 (2010)

    Article  Google Scholar 

  15. Gavrila, D.M., Munder, S.: Multi-cue pedestrian detection and tracking from a moving vehicle. Int. J. Comput. Vis. 73(1), 41–59 (2007)

    Article  Google Scholar 

  16. Gerónimo, D., Sappa, A.D., Ponsa, D., López, A.M.: 2d–3d-based on-board pedestrian detection system. Comput. Vis. Image Underst. 114(5), 583–595 (2010)

    Article  Google Scholar 

  17. Gurau, C., Hawke, J., Tong, C.H., Posner, I.: Learning on the job: Improving robot perception through experience. In: Neural Information Processing Systems (NIPS) Workshop on Autonomously Learning Robots. Montreal, Quebec, Canada (2014)

    Google Scholar 

  18. Hariharan, B., Malik, J., Ramanan, D.: Discriminative decorrelation for clustering and classification. European Conference on Computer Vision (2012)

    Google Scholar 

  19. Henriques, J., Carreira, J., Caseiro, R., Batista, J.: Beyond hard negative mining: efficient detector learning via block-circulant decomposition. In: 2013 IEEE International Conference on Computer Vision (ICCV), pp. 2760–2767 (2013)

    Google Scholar 

  20. Kanezaki, A., Inaba, S., Ushiku, Y., Yamashita, Y., Muraoka, H., Kuniyoshi, Y., Harada, T.: Hard negative classes for multiple object detection. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (2014)

    Google Scholar 

  21. Khosla, A., Zhou, T., Malisiewicz, T., Efros, A.A., Torralba, A.: Undoing the damage of dataset bias. In: Computer Vision-ECCV 2012, pp. 158–171. Springer (2012)

    Google Scholar 

  22. Petrovskaya, A., Thrun, S.: Model based vehicle detection and tracking for autonomous urban driving. Auton. Robots 26(2–3), 123–139 (2009)

    Article  Google Scholar 

  23. Stewart, A., Newman, P.: LAPS—localisation using appearance of prior structure: 6-DOF monocular camera localisation using prior pointclouds. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA). Minnesota, USA (2012)

    Google Scholar 

  24. Sudowe, P., Leibe, B.: Efficient use of geometric constraints for sliding-window object detection in video. In: Proceedings of the International Conference on Computer Vision Systems (ICVS) (2011)

    Google Scholar 

  25. Sung, K.K., Poggio, T.: Example-based learning for view-based human face detection. IEEE Trans. Pattern Anal. Mach. Intell. 20(1), 39–51 (1998)

    Article  Google Scholar 

  26. Teichman, A., Thrun, S.: Tracking-based semi-supervised learning. Int. J. Robot. Res. (IJRR) 31(7), 804–818 (2012)

    Article  Google Scholar 

  27. Teichman, A., Thrun, S.: Group induction. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2757–2763. Tokyo, Japan (2013)

    Google Scholar 

  28. Torralba, A., Efros, A.A.: Unbiased look at dataset bias. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1521–1528. IEEE (2011)

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support of this work by the EU project FP7-610603 (EUROPA2), EPSRC grant EP/J012017/1 and the UK Space Agency grant ST/L002981/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey Hawke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hawke, J., Gurău, C., Tong, C.H., Posner, I. (2016). Wrong Today, Right Tomorrow: Experience-Based Classification for Robot Perception. In: Wettergreen, D., Barfoot, T. (eds) Field and Service Robotics. Springer Tracts in Advanced Robotics, vol 113. Springer, Cham. https://doi.org/10.1007/978-3-319-27702-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27702-8_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27700-4

  • Online ISBN: 978-3-319-27702-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics