Skip to main content

BOR\(^2\)G: Building Optimal Regularised Reconstructions with GPUs (in Cubes)

  • Chapter
  • First Online:
Field and Service Robotics

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 113))

Abstract

This paper is about dense regularised mapping using a single camera as it moves through large work spaces. Our technique is, as many are, a depth-map fusion approach. However, our desire to work both at large scales and outdoors precludes the use of RGB-D cameras. Instead, we need to work with the notoriously noisy depth maps produced from small sets of sequential camera images with known inter-frame poses. This, in turn, requires the application of a regulariser over the 3D surface induced by the fusion of multiple (of order 100) depth maps. We accomplish this by building and managing a cube of voxels. The combination of issues arising from noisy depth maps and moving through our workspace/voxel cube, so it envelops us, rather than orbiting around it as is common in desktop reconstructions, forces the algorithmic contribution of our work. Namely, we propose a method to execute the optimisation and regularisation in a 3D volume which has been only partially observed and thereby avoiding inappropriate interpolation and extrapolation. We demonstrate our technique indoors and outdoors and offer empirical analysis of the precision of the reconstructions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.doc.ic.ac.uk/~ahanda/VaFRIC/index.html.

  2. 2.

    http://www.doc.ic.ac.uk/~ahanda/HighFrameRateTracking/downloads.html.

  3. 3.

    http://www.danielgm.net/cc.

References

  1. Bumblebee2 FireWire stereo vision camera systems Point Grey cameras. http://www.ptgrey.com/bumblebee2-firewire-stereo-vision-camera-systems

  2. Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imaging Vision 20(1ā€“2), 89ā€“97 (2004)

    MathSciNetĀ  Google ScholarĀ 

  3. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vision 40(1), 120ā€“145 (2011)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  4. Curless, B., Levoy, M.: A volumetric method for building complex models from range images. In: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, pp. 303ā€“312. ACM (1996)

    Google ScholarĀ 

  5. Geiger, A., Roser, M., Urtasun, R.: Efficient large-scale stereo matching. In: Asian Conference on Computer Vision (ACCV) (2010)

    Google ScholarĀ 

  6. Graber, G., Pock, T., Bischof, H.: Online 3D reconstruction using convex optimization. In: 1st Workshop on Live Dense Reconstruction From Moving Cameras, ICCV 2011 (2011)

    Google ScholarĀ 

  7. Handa, A., Whelan, T., McDonald, J., Davison, A.: A benchmark for RGB-D visual odometry, 3D reconstruction and SLAM. In: IEEE International Conference on Robotics and Automation, ICRA. Hong Kong, China (2014) (to appear)

    Google ScholarĀ 

  8. Hirschmuller, H.: Semi-global matching-motivation, developments and applications. http://www.hgpu.org (2011)

  9. Li, M., Mourikis, A.I.: High-precision, consistent EKF-based visualā€“inertial odometry. Int. J. Robot. Res. 32(6), 690ā€“711 (2013)

    ArticleĀ  Google ScholarĀ 

  10. Li, Y., Osher, S., et al.: A new median formula with applications to PDE based denoising. Commun. Math. Sci 7(3), 741ā€“753 (2009)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  11. Newcombe, R.A., Davison, A.J., Izadi, S., Kohli, P., Hilliges, O., Shotton, J., Molyneaux, D., Hodges, S., Kim, D., Fitzgibbon, A.: KinectFusion: real-time dense surface mapping and tracking. In: 2011 10th IEEE International Symposium on Mixed and Augmented Reality (ISMAR), pp. 127ā€“136. IEEE (2011)

    Google ScholarĀ 

  12. Pinies, P., Paz, L.M., Newman, P.: Dense and swift mapping with monocular vision. In: International Conference on Field and Service Robotics (FSR). Toronto, ON, Canada (2015)

    Google ScholarĀ 

  13. Pinies, P., Paz, L.M., Newman, P.: Dense mono reconstruction: living with the pain of the plain plane. In: IEEE 11th International Conference on Robotics and Automation. IEEE (2015)

    Google ScholarĀ 

  14. Pradeep, V., Rhemann, C., Izadi, S., Zach, C., Bleyer, M., Bathiche, S.: MonoFusion: real-time 3D reconstruction of small scenes with a single web camera. In: 2013 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), pp. 83ā€“88 (2013)

    Google ScholarĀ 

  15. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton, New Jersey (1970)

    BookĀ  MATHĀ  Google ScholarĀ 

  16. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. In: Proceedings of the 11th Annual International Conference of the Center for Nonlinear Studies on Experimental Mathematics: Computational Issues in Nonlinear Science, pp. 259ā€“268. Elsevier North-Holland, Inc. (1992)

    Google ScholarĀ 

  17. Steinbruecker, F., Kerl, C., Sturm, J., Cremers, D.: Large-scale multi-resolution surface reconstruction from RGB-D sequences. In: IEEE International Conference on Computer Vision (ICCV). Sydney, Australia (2013)

    Google ScholarĀ 

  18. Whelan, T., Kaess, M., Fallon, M.F., Johannsson, H., Leonard, J.J., McDonald, J.B.: Kintinuous: spatially extended KinectFusion. In: RSS Workshop on RGB-D: Advanced Reasoning with Depth Cameras. Sydney, Australia (2012)

    Google ScholarĀ 

  19. Whelan, T., Kaess, M., Johannsson, H., Fallon, M., Leonard, J.J., McDonald, J.: Real-time large-scale dense RGB-D SLAM with volumetric fusion. Int. J. Robot. Res. 0278364914551008 (2014)

    Google ScholarĀ 

  20. Xtion PRO specifications. http://www.asus.com/uk/Multimedia/Xtion_PRO/specifications/

  21. Zach, C., Pock, T., Bischof, H.: A globally optimal algorithm for robust TV-L 1 range image integration. In: IEEE 11th International Conference on Computer Vision, 2007. ICCV 2007, pp. 1ā€“8. IEEE (2007)

    Google ScholarĀ 

  22. Zach, C.: Fast and high quality fusion of depth maps. In: Proceedings of the International Symposium on 3D Data Processing, Visualization and Transmission (3DPVT), 1 (2008)

    Google ScholarĀ 

  23. Zeng, M., Zhao, F., Zheng, J., Liu, X.: Octree-based fusion for realtime 3D reconstruction. Graph. Models 75(3), 126ā€“136 (2013)

    ArticleĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Tanner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tanner, M., PiniƩs, P., Paz, L.M., Newman, P. (2016). BOR\(^2\)G: Building Optimal Regularised Reconstructions with GPUs (in Cubes). In: Wettergreen, D., Barfoot, T. (eds) Field and Service Robotics. Springer Tracts in Advanced Robotics, vol 113. Springer, Cham. https://doi.org/10.1007/978-3-319-27702-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27702-8_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27700-4

  • Online ISBN: 978-3-319-27702-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics