Skip to main content

Integrated Chip Power Receiver for Wireless Bio-implantable Devices

  • Conference paper
  • First Online:
Biomedical Engineering Systems and Technologies (BIOSTEC 2015)

Abstract

Wireless bio-medical devices employ inductive link as medium for transfer of energy between the external source and the implant. But, the inductive power picked by receiver results in high voltage, that may largely exceed the voltage compliance of low voltage integrated chips. The high voltage at the receiver is due to high load impedance offered by electrodes within the implant. To limit the magnitude of induced voltage, majority of the low voltage circuits use power inefficient methods like voltage clippers and shunt regulators. Therefore, to overcome voltage limitation and to enhance power efficiency, a power receiver topology based on step-down approach is designed and implemented for input voltage as high as 30 V. The implemented design consists of rectifier and series voltage regulator. In addition a battery charger circuit that ensures safe and reliable charging of the implant battery is designed and tested. The proposed design is fabricated in 0.35 \(\mu \)m high voltage BCD foundry. Rectifier and regulator power efficacy are analyzed based on simulation and measurement results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Balachandran, G., Barnett, R.: A 110 na voltage regulator system with dynamic bandwidth boosting for rfid systems. IEEE J. Solid-State Circ. 41, 2019–2028 (2006)

    Article  Google Scholar 

  2. Ballan, H., Declercq, M., Krummenacher, F.: Design and optimization of high voltage analog and digital circuits built in a standard 5v cmos technology. In: IEEE Custom Integrated circuits Conference, pp. 574–577 (1994)

    Google Scholar 

  3. Cha, H.K., Park, W.T., Je, M.: A CMOS rectifier with a cross-coupled latched comparator for wireless power transfer in biomedical applications. IEEE Trans. Circ. Syst.-ll:Briefs 59, 409–413 (2012)

    Article  Google Scholar 

  4. Chen, M., Rincon-Mora, G.: Accurate, compact, and power-efficient li-ion battery charger circuit. IEEE Trans. Circ. Syst.-ll:Briefs 53, 1180–1184 (2006)

    Article  Google Scholar 

  5. Do Valle, B., Wentz, C., Sarpeshkar, R.: An area and power-efficient analog li-ion battery charger circuit. IEEE Trans. Biomed. Circ. Syst. 5, 131–137 (2011)

    Article  Google Scholar 

  6. Garimella, A., Furth, P.M., Surkanti, P.R., Thota, N.R.: Current buffer compensation topologies for ldos with improved transient performance. Analog Integr. Circ. Sig. Process. 73, 131–142 (2011)

    Article  Google Scholar 

  7. Guo, S., Lee, H.: An effiency-enhanced cmos rectifier with unbalanced-biased comparators for transcutaneous-powered high-current implants. IEEE J. Solid-State Circ. 44, 1796–1804 (2009)

    Article  Google Scholar 

  8. Huang, P., Lin, H., Lin, Y.T.: A simple subthreshold cmos voltage reference circuit with channellength modulation compensation. IEEE Trans. Circ. Syst.-ll:Briefs 59, 882–885 (2006)

    Article  Google Scholar 

  9. Lee, H.M., Ghovanloo, M.: An integrated power-efficient active rectifier with offset-controlled high speed comparators for inductively powered applications. IEEE Trans. Circ. Syst. I: Regul. Pap. 58, 1749–1760 (2011)

    Article  MathSciNet  Google Scholar 

  10. Li, P., Bashirullah, R.: A wireless power interface for rechargeable battery operated medical implants. IEEE Trans. Circ. Syst. II: Express Briefs 54, 912–916 (2007)

    Article  Google Scholar 

  11. Li, Y.T., Chang, C.H., Chen, J.J.J., Wang, C.C., Liang, C.K.: Development of implantable wireless biomicrosystem for measuring electrodetissue impedance. J. Med. Biol. Eng. 25, 99–105 (2005)

    Google Scholar 

  12. Li, Y.T., Peng, C.W., Chen, L.T., Lin, W.S., Chu, C.H., Chen, J.J.J.: Application of implantable wireless biomicrosystem for monitoring nerve impedance of rat after sciatic nerve injury. IEEE Trans. Neural Syst. Rehabil. Eng. 1, 121–128 (2013)

    Article  Google Scholar 

  13. Mandal, S., Sarpeshkar, R.: Low-power CMOS rectifier design for RFID applications. IEEE Trans. Circ. Syst. I: Regul. Pap. 54, 1177–1188 (2007)

    Article  Google Scholar 

  14. Mounaim, F., Sawan, M.: Integrated highvoltage inductive power and data-recovery front end dedicated to implantable devices. IEEE Trans. Bio-Med. Circ. Syst. 5, 283–291 (2011)

    Article  Google Scholar 

  15. Mounaim, F., Sawan, M.: Toward a fully integrated neurostimulator with inductive power recovery front-end. IEEE Trans. Bio-Med. Circ. Syst. 6, 309–318 (2012)

    Article  Google Scholar 

  16. Nakamoto, H., Yamazaki, D., Yamamoto, T., Kurata, H., Yamada, S., Mukaida, K., Ninomiya, T., Ohkawa, T., Masui, S., Gotoh, K.: A passive UHF RF idetification CMOS tag IC using ferroelectric RAM in 0.35 \(\mu \)m technology. IEEE J. Solid-State Circ. 42, 101–110 (2007)

    Article  Google Scholar 

  17. Nicolson, S., Phang, K.: Step-up versus stepdown DC/DC converters for RF-powered systems. In: Proceedings of the 2004 International Symposium on Circuits and Systems. ISCAS 2004, pp. 900–903 (2004)

    Google Scholar 

  18. Rincon-Mora, G.A.: Analog IC Design With Low-dropout Regulators. McGraw-Hill, New York (2009)

    Google Scholar 

  19. Su, C., Islam, S.K., Zhu, K., Zuo, L.: A hightemperature, high-voltage, fast response linear voltage regulator. Analog Integr. Circ. Sig. Process. 72, 405–417 (2012)

    Article  Google Scholar 

  20. Thil, M.A., Gerard, B., Jarvis, J.C., Vince, V., Veraart, C., Colin, I.M., Delbeke, J.: Tissue-electrode interface changes in the first week after spiral cuff implantation: preliminary results. In: Annual Conference of the International FES Society (2004)

    Google Scholar 

  21. Tomita, K., Shinoda, R., Kuroda, T., Ishikuro, H.: 1-W, 3.3-16.3-V boosting wireless power transfer circuits with vector summing power controller. IEEE J. Solid-State Circ. 47, 2576–2585 (2012)

    Article  Google Scholar 

  22. Ueno.K.: CMOS voltage and current reference circuits consisting of subthreshold MOSFETs- micropower circuit components for power-aware LSI applications- solid state circuits technologies. In:Tech (2010)

    Google Scholar 

  23. Nair, V.V., Youn J.H., Choi, J.R.: High voltage integrated chip power recovering topology for implantable wireless biomedical devices.In: International conference on Biomedical Electronics and Devices, BOIDEVICES (2015)

    Google Scholar 

  24. Nair, V.V., Nagakarthik, T., Choi, J.R.: Efficiency enhanced magnetic resonsnce wireless power transfer sysytem and high voltage integrated chip power recovery scheme. In: IEEE International Conference on Electronics, Computing and Communication Technologies, IEEE CONECCT (2014)

    Google Scholar 

  25. Wang, G., Liu, W., Sivaprakasam, M., Kendir, G.A.: Design and analysis of an adaptive transcutaneous power telemetry for biomedical implants. IEEE Trans. Circ. Syst. I: Regul. Pap. 52, 2109–2117 (2005)

    Article  Google Scholar 

  26. Zou, V., Larsen, T.: Modeling of substrate leakage currents in a high-voltage CMOS rectifier. Analog Integr. Circ. Sig. Process. 71, 231–236 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2013R1A1A4A01012624)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Rim Choi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Nair, V.V., Choi, J.R. (2015). Integrated Chip Power Receiver for Wireless Bio-implantable Devices. In: Fred, A., Gamboa, H., Elias, D. (eds) Biomedical Engineering Systems and Technologies. BIOSTEC 2015. Communications in Computer and Information Science, vol 574. Springer, Cham. https://doi.org/10.1007/978-3-319-27707-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27707-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27706-6

  • Online ISBN: 978-3-319-27707-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics