Skip to main content

Non-invasive Wireless Bio Sensing

  • Conference paper
  • First Online:
Biomedical Engineering Systems and Technologies (BIOSTEC 2015)

Abstract

Wireless sensing technologies are increasingly being employed on Health systems, aiming to improve the data communication flow between patients and clinical experts. This is especially important for patients located at remote locations or facing mobility constraints. In order to fully exploit the advantages of wireless communications, it is necessary biosensors that collect data about user’s health, possibly integrated on a personal wireless sensor network. With this goal in mind, a wireless solution is described that presents an innovative wireless heart rate device, as well as user interface technologies for enabling real-time data visualization on mobile devices by patients and medical experts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Campbell, A.T., Eisenman, S.B., Lane, N.D., Miluzzo, E., Peterson, R.A., Lu, H.L.H., Zheng, X.Z.X.: The rise of people-centric sensing. In: IEEE Internet Computing, pp. 12–21. IEEE Computer Society, doi:10.1109/MIC (2008)

  2. Lane, N.D., Miluzzo, E., Lu, H.L.H., Peebles, D., Choudhury, T., Campbell, A.T.: A survey of mobile phone sensing. IEEE Commun. Mag. 48, 140–150 (2010)

    Article  Google Scholar 

  3. Zhang, D., Guo, B., Li, B., Yu, Z.: Extracting social and community intelligence from digital footprints: an emerging research area. In: Yu, Z., Liscano, R., Chen, G., Zhang, D., Zhou, X. (eds.) UIC 2010. LNCS, vol. 6406, pp. 4–18. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  4. Miluzzo, E., Lane, N.D., Fodor, K., Peterson, R., Lu, H., Musolesi, M., Eisenman, S.B., Zheng, X., Campbell, A.T.: Sensing meets mobile social networks: the design, implementation and evaluation of the CenceMe application. Archit. Des. 10, 337–350 (2008). doi:10.1145/1460412.1460445

    Google Scholar 

  5. Abdelzaher, T., Anokwa, Y., Boda, P., Burke, J., Estrin, D., Guibas, L., Kansal, A., Madden, S., Reich, J.: Mobiscopes for human spaces. IEEE Pervasive Comput. 6(2), 20–29 (2007). doi:10.1109/MPRV.2007.38

    Article  Google Scholar 

  6. Graham, E.M., Ruis, K., Hartman, A.L., Northington, F.J., Fox, H.E.: A systematic review of the role of intrapartum hypoxiaischemia in the causation of neonatal encephalopathy. Am. J. Obstet. Gynecol. 199(6), 587–595 (2008)

    Article  Google Scholar 

  7. Devoe, L.D.: Electronic fetal monitoring: does it really lead to better outcomes? Am. J. Obstet. Gynecol. 204(6), 455–456 (2011)

    Article  Google Scholar 

  8. Jenkins, H.: Technical progress in fetal electrocardiography - a review. J. Perinat. Med. 14, 365–377 (1986)

    Article  MathSciNet  Google Scholar 

  9. Banta, D.H., Thacker, S.B.: Historical controversy in health technology assessment: the case of electronic fetal monitoring. Obstet. Gynecol. Surv. 56(11), 707–719 (2001)

    Article  Google Scholar 

  10. Alfirevic, Z., Devane, D., Gyte, G.M.L.: Continuous cardiotocography (CTG) as a form of electronic fetal monitoring (EFM) for fetal assessment during labour. Cochrane Database of Syst. Rev. 3, CD006066 (2006)

    Google Scholar 

  11. American College of Obstetricians and Gynecologists: ACOG Practice Bulletin No. 106: Intrapartum fetal heart rate monitoring: nomenclature, interpretation, and general management principles. Obstet. Gynecol. 114(1), 192–202 (2009)

    Article  Google Scholar 

  12. Piéri, J.F., Crowe, J.A., Hayes-Gill, B.R., Spencer, C.J., Bhogal, K., James, D.K.: Compact long-term recorder for the transabdominal foetal and maternal electrocardiogram. Med. Biol. Eng. Comput. 39(1), 118–125 (2001)

    Article  Google Scholar 

  13. Crowe, J.A., Harrison, A., Hayes-Gill, B.R.: The feasibility of long-term fetal heart rate monitoring in the home environment using maternal abdominal electrodes. Physiol. Meas. 16(3), 195–202 (1995)

    Article  Google Scholar 

  14. Graatsma, E.M., Jacod, B.C., Van, Egmond L.A.J., Mulder, E.J.H., Visser, G.H.A.: Fetal electrocardiography: feasibility of long-term fetal heart rate recordings. BJOG: Int. J. Obstet. Gynaecol. 116(2), 334–337 (2009). discussion, pp. 337–338

    Article  Google Scholar 

  15. Karvounis, E.C., Tsipouras, M.G., Papaloukas, C., Tsalikakis, D.G., Naka, K.K., Fotiadis, D.I.: A non-invasive methodology for fetal monitoring during pregnancy. Methods Inf. Med. 49(3), 238–253 (2010)

    Article  Google Scholar 

  16. Taylor, M.J.O., Smith, M.J., Thomas, M., Green, A.R., Cheng, F., Oseku-Afful, S., Wee, L.Y., Fisk, N.M., Gardiner, H.M.: Non-invasive fetal electrocardiography in singleton and multiple pregnancies. BJOG: Int. J. Obstet. Gynaecol. 110(7), 668–678 (2003)

    Article  Google Scholar 

  17. Thomas, M.J., Cleal, J.K., Hanson, M.A., Green, L.R., Gardiner, H.M.: Non-invasive fetal electrocardiography: validation and interpretation. In: 4th IET International Conference on Advances in Medical, Signal and Information Processing MEDSIP, pp. 1–4 (2008)

    Google Scholar 

  18. CESDI 7th Annual Report - CTG Education Survey. Maternal and Child Health Research Consortium, London, Technical report (2000)

    Google Scholar 

  19. Lu, H., Pan, W., Lane, N.D., Choudhury, T., Campbell, A.T.: SoundSense: scalable sound sensing for people-centric applications on mobile phones. In: Architecture, pp. 165–178 (2009)

    Google Scholar 

  20. Zapata, B., Hernandez Ninirola, A., Fernandez-Aleman, J., Toval, A.: Assessing the privacy policies in mobile personal health records. In: 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 4956–4959 (2014)

    Google Scholar 

  21. Lomotey, R., Deters, R.: Mobile-based medical data accessibility in mHealth. In: 2nd IEEE International Conference on Mobile Cloud Computing, Services, and Engineering (MobileCloud), pp. 91–100 (2014)

    Google Scholar 

  22. Gandhi, O.P., Morgan, L.L., De Salles, A.A., Han, Y.-Y., Herberman, R.B., Davis, D.L.: Exposure limits: the underestimation of absorbed cell phone radiation, especially in children. Electromagn. Biol. Med. 31(1), 34–51 (2012)

    Article  Google Scholar 

  23. Kansal, A., Goraczko, M., Zhao, F.: Building a sensor network of mobile phones. In: Proceedings of the 6th International Conference on Information Processing in Sensor Networks, IPSN 2007 (2007)

    Google Scholar 

  24. Andrade, J., Arsenio, A.: Epidemic estimation over social networks using large scale biosensors. Publication at Advanced Research on Hybrid Intelligent Techniques and Applications, pp. 287–320. IGI Global, Hershey (2015)

    Google Scholar 

Download references

Acknowledgements

Part of this work was supported by Harvard Medical School Portugal Collaborative Research Award HMSP-CT/SAU-ICT/0064/2009: Improving perinatal decision-making: development of complexity-based dynamical measures and novel acquisition systems. Artur Arsenio has also been partially funded by CMU-Portuguese program through Fundação para Ciência e Tecnologia, AHA-Augmented Human Assistance project, AHA, CMUP-ERI/HCI/0046/2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artur Arsenio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Arsenio, A., Andrade, J., Duarte, A. (2015). Non-invasive Wireless Bio Sensing. In: Fred, A., Gamboa, H., Elias, D. (eds) Biomedical Engineering Systems and Technologies. BIOSTEC 2015. Communications in Computer and Information Science, vol 574. Springer, Cham. https://doi.org/10.1007/978-3-319-27707-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27707-3_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27706-6

  • Online ISBN: 978-3-319-27707-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics