Abstract
Our work is generally focused on recommending for small or medium-sized e-commerce portals, where we are facing scarcity of explicit feedback, low user loyalty, short visit times or low number of visited objects. In this paper, we present a novel approach to use specific user behavior as implicit feedback, forming binary relations between objects. Our hypothesis is that if user select some object from the list of displayed objects, it is an expression of his/her binary preference between selected and other shown objects. These relations are expanded based on content-based similarity of objects forming partial ordering of objects. Using these relations, it is possible to alter any list of recommended objects or create one from scratch.
We have conducted several off-line experiments with real user data from a Czech e-commerce site with keyword based VSM and SimCat recommenders. Experiments confirmed competitiveness of our method, however on-line A/B testing should be conducted in the future work.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Probabilistic sum \( S_{sum} \left( {a,b} \right) = a + b - a*b \) .
References
Baltrunas, L., Amatriain, X.: Towards time-dependant recommendation based on implicit feedback. In: CARS 2009 (RecSys)
Claypool, M., Le, P., Wased, M., Brown, D.: Implicit interest indicators. In: IUI 2001, pp. 33–40. ACM (2001)
Cremonesi, P., Garzotto, F., Turrin, R.: User-centric vs. system-centric evaluation of recommender systems. In: Kotzé, P., Marsden, G., Lindgaard, G., Wesson, J., Winckler, M. (eds.) INTERACT 2013, Part III. LNCS, vol. 8119, pp. 334–351. Springer, Heidelberg (2013)
Desarkar, M.S., Saxena, R., Sarkar, S.: Preference relation based matrix factorization for recommender systems. In: Masthoff, J., Mobasher, B., Desmarais, M.C., Nkambou, R. (eds.) UMAP 2012. LNCS, vol. 7379, pp. 63–75. Springer, Heidelberg (2012)
Eckhardt, A., Horváth, T., Vojtáš, P.: PHASES: a user profile learning approach for web search. In: WI 2007, pp. 780–783. IEEE (2007)
Fang, Y., Si, L.: A latent pairwise preference learning approach for recommendation from implicit feedback. In: CIKM 2012, pp. 2567–2570. ACM (2012)
Hidasi, B., Tikk, D.: Initializing matrix factorization methods on implicit feedback databases. J. UCS 19, 1834–1853 (2013)
Hu, Y., Koren, Y., Volinsky, C.: Collaborative filtering for implicit feedback datasets. In: ICDM 2008, pp. 263–272. IEEE (2008)
Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender systems. Comput. IEEE Comput. Soc. Press 42, 30–37 (2009)
Lai, Y., Xu, X., Yang, Z., Liu, Z.: User interest prediction based on behaviors analysis. Int. J. Digit. Content Technol. Appl. 6(13), 192–204 (2012)
Lee, D.H., Brusilovsky, P.: Reinforcing recommendation using implicit negative feedback. In: Houben, G.-J., McCalla, G., Pianesi, F., Zancanaro, M. (eds.) UMAP 2009. LNCS, vol. 5535, pp. 422–427. Springer, Heidelberg (2009)
Lops, P., de Gemmis, M., Semeraro, G.: Content-based recommender systems: state of the art and trends. In: Recommender Systems Handbook, Springer, Heidelberg, pp. 73–105 (2011)
Ostuni, V.C., Di Noia, T., Di Sciascio, E., Mirizzi, R.: Top-N recommendations from implicit feedback leveraging linked open data. In: RecSys 2013, pp. 85–92. ACM (2013)
Peska, L.: IPIget– The Component for Collecting Implicit User Preference Indicators. In ITAT 2014, Ustav informatiky AV CR, 2014, 22–26. http://itat.ics.upjs.sk/workshops.pdf
Peska, L., Vojtas, P.: Evaluating various implicit factors in e-commerce. In: RUE (RecSys) 2014, CEUR, 910, pp. 51–55 (2012)
Peska, L., Vojtas, P.: Negative implicit feedback in e-commerce recommender systems. In: WIMS 2013, pp. 45:1–45:4. ACM (2013)
Peska, L., Vojtas, P.: Recommending for disloyal customers with low consumption rate. In: Geffert, V., Preneel, B., Rovan, B., Štuller, J., Tjoa, A.M. (eds.) SOFSEM 2014. LNCS, vol. 8327, pp. 455–465. Springer, Heidelberg (2014)
Peska, L., Vojtas, P.: Enhancing recommender system with linked open data. In: Larsen, H.L., Martin-Bautista, M.J., Vila, M.A., Andreasen, T., Christiansen, H. (eds.) FQAS 2013. LNCS, vol. 8132, pp. 483–494. Springer, Heidelberg (2013)
Raman, K., Shivaswamy, P., Joachims, T.: Online learning to diversify from implicit feedback. In: KDD 2012, pp. 705–713. ACM (2012)
Rendle, S., Freudenthaler, C., Gantner, Z., Schmidt-Thieme, L.: BPR: bayesian personalized ranking from implicit feedback. In: UAI 2009, pp. 452–461. AUAI Press (2009)
Yang, B., Lee, S., Park, S., Lee, S.: Exploiting various implicit feedback for collaborative filtering. In: WWW 2012, pp. 639–640. ACM (2012)
Acknowledgments
This work was supported by the grant SVV-2015-260222, P46 and GAUK-126313. The SQL export of the bookshop dataset used during the experiments can be obtained on http://www.ksi.mff.cuni.cz/~peska/bookshop2014.zip.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Peska, L., Vojtas, P. (2015). Using Implicit Preference Relations to Improve Content Based Recommending. In: Stuckenschmidt, H., Jannach, D. (eds) E-Commerce and Web Technologies. EC-Web 2015. Lecture Notes in Business Information Processing, vol 239. Springer, Cham. https://doi.org/10.1007/978-3-319-27729-5_1
Download citation
DOI: https://doi.org/10.1007/978-3-319-27729-5_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-27728-8
Online ISBN: 978-3-319-27729-5
eBook Packages: Computer ScienceComputer Science (R0)