Skip to main content

A Deep Belief Network for Classifying Remotely-Sensed Hyperspectral Data

  • Conference paper
  • First Online:
Advances in Visual Computing (ISVC 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9474))

Included in the following conference series:

Abstract

Improving the classification accuracy of remotely sensed data is of paramount interest for science and defense applications. In this paper, we investigate deep learning architectures (DLAs), whose popularity has grown recently due to the discovery of efficient algorithms to train them, one of which, unsupervised pre-training, seeks to initialize the learned model in a way that greatly encourages efficient supervised learning. We propose a structure for a DLA, the deep belief network (DBN), suitable for the classification of remotely-sensed hyperspectral data. To arrive at this structure, we first study the role of the DBN’s width and the duration of pre-training in the learning of features used for the multiclass discrimination of spectral data. We then study the effect of exploiting joint spectral-spatial information. The support vector machine (SVM) is used as a baseline to determine that the proposed method is feasible, offering consistently high classification accuracies in comparison.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bruce, L., Koger, C., Li, J.: Dimensionality reduction of hyperspectral data using discrete wavelet transform feature extraction. IEEE Trans. Geosci. Remote Sens. 40, 2331–2338 (2002)

    Article  Google Scholar 

  2. Harsanyi, J., Chang, C.I.: Hyperspectral image classification and dimensionality reduction: an orthogonal subspace projection approach. IEEE Trans. Geosci. Remote Sens. 32, 779–785 (1994)

    Article  Google Scholar 

  3. Kang, X., Li, S., Benediktsson, J.: Spatial hyperspectral image classification with edge-preserving filtering. IEEE Trans. Geosci. Remote Sens. 52, 2666–2677 (2014)

    Article  Google Scholar 

  4. Melgani, F., Bruzzone, L.: Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans. Geosci. Remote Sens. 42, 1778–1790 (2004)

    Article  Google Scholar 

  5. Pal, M., Foody, G.: Feature selection for classification of hyperspectral data by SVM. IEEE Trans. Geosci. Remote Sens. 48, 2297–2307 (2010)

    Article  Google Scholar 

  6. Li, J., Bioucas-Dias, J., Plaza, A.: Hyperspectral image segmentation using a new bayesian approach with active learning. IEEE Trans. Geosci. Remote Sens. 49, 3947–3960 (2011)

    Article  Google Scholar 

  7. Li, J., Bioucas-Dias, J.M., Plaza, A.: Semisupervised hyperspectral image classification using soft sparse multinomial logistic regression. IEEE Geosci. Remote Sens. Lett. 10, 318–322 (2013)

    Article  Google Scholar 

  8. Li, J., Bioucas-Dias, J., Plaza, A.: Spatial classification of hyperspectral data using loopy belief propagation and active learning. IEEE Trans. Geosci. Remote Sens. 51, 844–856 (2013)

    Article  Google Scholar 

  9. Bernard, K., Tarabalka, Y., Angulo, J., Chanussot, J., Benediktsson, J.: Spatial classification of hyperspectral data based on a stochastic minimum spanning forest approach. IEEE Trans. Image Process. 21, 2008–2021 (2012)

    Article  MathSciNet  Google Scholar 

  10. Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief nets. Neural Comput. 18, 1527–1554 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  11. Larochelle, H., Erhan, D., Courville, A., Bergstra, J., Bengio, Y.: An empirical evaluation of deep architectures on problems with many factors of variation. In: Proceedings of the 24th International Conference on Machine Learning, ICML 2007, pp. 473–480. ACM, New York (2007)

    Google Scholar 

  12. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313, 504–507 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  13. Bengio, Y., Courville, A.C., Vincent, P.: Unsupervised feature learning and deep learning: a review and new perspectives. CoRR abs/1206.5538 (2012)

  14. Bengio, Y.: Learning deep architectures for AI. Found. Trends Mach. Learn. 2, 1–127 (2009)

    Article  MATH  Google Scholar 

  15. Bengio, Y., Lecun, Y., Operationnelle, D.D.E.R., Montreal, U.D.: Scaling learning algorithms towards AI. In: Bottou, L., Chapelle, O., DeCoste, D., Weston, J. (eds.) Large-Scale Kernel Machines. MIT Press, Cambridge (2007)

    Google Scholar 

  16. Lin, Z., Chen, Y., Zhao, X., Wang, G.: Spectral-spatial classification of hyperspectral image using autoencoders. In: 2013 9th International Conference on Information, Communications and Signal Processing (ICICS), pp. 1–5 (2013)

    Google Scholar 

  17. Chen, Y., Lin, Z., Zhao, X., Wang, G., Gu, Y.: Deep learning-based classification of hyperspectral data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 7, 2094–2107 (2014)

    Article  Google Scholar 

  18. Chen, Y., Zhao, X., Jia, X.: Spectral-spatial classification of hyperspectral data based on deep belief network. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 8, 2381–2392 (2015)

    Article  Google Scholar 

  19. Le Roux, N., Bengio, Y.: Representational power of restricted boltzmann machines and deep belief networks. Neural Comput. 20, 1631–1649 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  20. Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H., Montral, U.D., Qubec, M.: Greedy layer-wise training of deep networks. In: Schölkopf, B., Platt, J., Hoffman, T. (eds.) NIPS. MIT Press, Cambridge (2007)

    Google Scholar 

  21. Bengio, Y.: Practical recommendations for gradient-based training of deep architectures. CoRR abs/1206.5533 (2012)

  22. Serpico, S., Bruzzone, L.: A new search algorithm for feature selection in hyperspectral remote sensing images. IEEE Trans. Geosci. Remote Sens. 39, 1360–1367 (2001)

    Article  Google Scholar 

  23. Chang, C.I., Du, Q., Sun, T.L., Althouse, M.: A joint band prioritization and band-decorrelation approach to band selection for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 37, 2631–2641 (1999)

    Article  Google Scholar 

  24. Makantasis, K., Karantzalos, K., Doulamis, A., Doulamis, N.: Deep supervised learning for hyperspectral data classification through convolutional neural networks. In: IGARSS, pp. 1771–1800 (2015)

    Google Scholar 

Download references

Acknowledgements

This research was supported by NASA EPSCoR under cooperative agreement No. NNX10AR89A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Pour Yazdanpanah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Le, J.H., Yazdanpanah, A.P., Regentova, E.E., Muthukumar, V. (2015). A Deep Belief Network for Classifying Remotely-Sensed Hyperspectral Data. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2015. Lecture Notes in Computer Science(), vol 9474. Springer, Cham. https://doi.org/10.1007/978-3-319-27857-5_61

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27857-5_61

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27856-8

  • Online ISBN: 978-3-319-27857-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics