Skip to main content

Extracting Surface Geometry from Particle-Based Fracture Simulations

  • Conference paper
  • First Online:
Advances in Visual Computing (ISVC 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9474))

Included in the following conference series:

Abstract

This paper describes an algorithm for fracture surface extraction from particle-based simulations of brittle fracture. We rely on a tetrahedral mesh of the rest configuration particles and use a simple, table-lookup approach to produce triangulated fracture geometry for each rest configuration tetrahedron based on its configuration of broken edges. Subsequently, these triangle vertices are transformed with a per particle transformation to obtain a fracture surface in world space that has minimal deformation and also preserves temporal coherence. The results show that our approach is effective at producing realistic fractures, and capable of extracting fracture surfaces from the complex simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Terzopoulos, D., Fleischer, K.W.: Modeling inelastic deformation: viscolelasticity, plasticity, fracture. Comput. Graph. 22(4), 269–278 (1988)

    Article  Google Scholar 

  2. Norton, A., Turk, G., Bacon, R., Gerth, J., Sweeney, P.: Animation of fracture by physical modeling. Visual Comput. 7, 210–219 (1991)

    Article  Google Scholar 

  3. O’Brien, J.F., Hodgins, J.K.: Graphical modeling and animation of brittle fracture. In: SIGGRAPH, pp. 137–146 (1999)

    Google Scholar 

  4. O’Brien, J.F., Bargteil, A.W., Hodgins, J.K.: Graphical modeling and animation of ductile fracture. ACM Trans. Graph. 21, 291–294 (2002)

    Google Scholar 

  5. Müller, M., McMillan, L., Dorsey, J., Jagnow, R.: Computer animation and simulation 2001. In: Magnenat-Thalmann, N., Thalmann, D. (eds.) Real-time Simulation of Deformation and Fracture of Stiff Materials. Eurographics, pp. 113–124. Springer, Vienna (2001)

    Google Scholar 

  6. Bao, Z., Hong, J.M., Teran, J., Fedkiw, R.: Fracturing rigid materials. IEEE Trans. Visual. Comput. Graphics 13, 370–378 (2007)

    Article  Google Scholar 

  7. Parker, E.G., O’Brien, J.F.: Real-time deformation and fracture in a game environment. In: Proceedings of the 2009 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 165–175. ACM (2009)

    Google Scholar 

  8. Koschier, D., Lipponer, S., Bender, J.: Adaptive tetrahedral meshes for brittle fracture simulation. In: Proceedings of the 2014 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, Eurographics Association (2014)

    Google Scholar 

  9. Hirota, K., Tanoue, Y., Kaneko, T.: Simulation of three-dimensional cracks. Visual Comput. 16, 371–378 (2000)

    Article  MATH  Google Scholar 

  10. Levine, J., Bargteil, A., Corsi, C., Tessendorf, J., Geist, R.: A peridynamic perspective on spring-mass fracture. In: Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. (2014)

    Google Scholar 

  11. Pauly, M., Keiser, R., Adams, B., Dutré, P., Gross, M., Guibas, L.J.: Meshless animation of fracturing solids. ACM Trans. Graph. (TOG) 24, 957–964 (2005). ACM

    Article  Google Scholar 

  12. Akinci, G., Ihmsen, M., Akinci, N., Teschner, M.: Parallel surface reconstruction for particle-based fluids. Comp. Graph. Forum 31, 1797–1809 (2012)

    Article  Google Scholar 

  13. Bhattacharya, H., Gao, Y., Bargteil, A.W.: A level-set method for skinning animated particle data. In: Symposium on Computer Animation, pp. 17–24 (2011)

    Google Scholar 

  14. Yu, J., Turk, G.: Reconstructing surfaces of particle-based fluids using anisotropic kernels. ACM Trans. Graph. (TOG) 32, 5 (2013)

    Article  Google Scholar 

  15. Lorensen, W.E., Cline, H.E.: Marching cubes: a high resolution 3d surface construction algorithm. In: ACM siggraph computer graphics, vol. 21, pp. 163–169. ACM (1987)

    Google Scholar 

  16. Nielson, G.M., Franke, R.: Computing the separating surface for segmented data. In: IEEE Proceedings on Visualization 1997, pp. 229–233 (1997)

    Google Scholar 

  17. Bronson, J., Levine, J., Whitaker, R., et al.: Lattice cleaving: a multimaterial tetrahedral meshing algorithm with guarantees. IEEE Trans. Visual. Comput. Graphics 20, 223–237 (2014)

    Article  Google Scholar 

  18. Kabsch, W.: A discussion of the solution for the best rotation to relate two sets of vectors. Acta Crystallogr. A 34, 827–828 (1978)

    Article  Google Scholar 

  19. Twigg, C.D., Kačić-Alesić, Z.: Point cloud glue: constraining simulations using the procrustes transform. In: Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 45–54 (2010)

    Google Scholar 

Download references

Acknowledgments

This material is based upon work supported by the National Science Foundation under Grant Nos. IIS-1314757 and CNS-1126344. The School of Computing at Clemson University is an NVIDIA GPU Research Center and an NVIDIA GPU Teaching Center. Thanks to David Leubke, Cliff Woolley, and Chandra Cheij of NVIDIA for their support in providing hardware and technical consultation. We also thank Benafsh Husain for reviewing an early draft of this manuscript. The hand model was created by user monatsend and distributed on www.blendswap.com.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chakrit Watcharopas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Watcharopas, C., Sapra, Y., Geist, R., Levine, J.A. (2015). Extracting Surface Geometry from Particle-Based Fracture Simulations. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2015. Lecture Notes in Computer Science(), vol 9474. Springer, Cham. https://doi.org/10.1007/978-3-319-27857-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27857-5_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27856-8

  • Online ISBN: 978-3-319-27857-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics