
ar
X

iv
:1

51
1.

09
15

3v
1

 [
st

at
.M

L
]

 3
0

N
ov

 2
01

5

Alternating direction method of multipliers for

regularized multiclass support vector machines

Yangyang Xu1, Ioannis Akrotirianakis2, and Amit Chakraborty2

1 Rice University, Houston, TX, USA
yangyang.xu@rice.edu

2 Siemens Corporate Technology, Princeton, NJ, USA
(ioannis.akrotirianakis, amit.chakraborty)@siemens.com

Abstract. The support vector machine (SVM) was originally designed
for binary classifications. A lot of effort has been put to generalize the
binary SVM to multiclass SVM (MSVM) which are more complex prob-
lems. Initially, MSVMs were solved by considering their dual formu-
lations which are quadratic programs and can be solved by standard
second-order methods. However, the duals of MSVMs with regularizers
are usually more difficult to formulate and computationally very expen-
sive to solve. This paper focuses on several regularized MSVMs and ex-
tends the alternating direction method of multiplier (ADMM) to these
MSVMs. Using a splitting technique, all considered MSVMs are written
as two-block convex programs, for which the ADMM has global con-
vergence guarantees. Numerical experiments on synthetic and real data
demonstrate the high efficiency and accuracy of our algorithms.

Keywords: Alternating Direction Method of Multipliers, Support Vec-
tor Machine, Multiclass classification, Elastic Net, Group lasso, Supnorm

1 Introduction

The linear support vector machine (SVM) [6] aims to find a hyperplane to sep-
arate a set of data points. It was orginally designed for binary classifications.
Motivated by texture classification and gene expression analysis, which usually
have a large number of variables but only a few relevant, certain sparsity reg-
ularizers such as the ℓ1 penalty [4], need to be included in the SVM model to
control the sparsity pattern of the solution and achieve both classification and
variable selection. On the other hand, the given data points may belong to more
than two classes. To handle the more complex multiclass problems, the binary
SVM has been generalized to multicategory classifications [7].

The initially proposed multiclass SVM (MSVM) methods construct several
binary classifiers, such as “one-against-one” [1], “one-against-rest” [2] and “di-
rected acyclic graph SVM” [17]. These models are usually solved by considering
their dual formulations, which are quadratic programs often with fewer variables
and can be efficiently solved by quadratic programming methods. However, these
MSVMs may suffer from data imbalance (i.e., some classes have much fewer data

http://arxiv.org/abs/1511.09153v1

points than others) which can result in inaccurate predictions. One alternative
is to put all the data points together in one model, which results in the so-called
“all-together” MSVMs; see [14] and references therein for the comparison of dif-
ferent MSVMs. The “all-together” MSVMs train multi-classifiers by solving one
large optimization problem, whose dual formulation is also a quadratic program.
In the applications of microarray classification, variable selection is important
since most times only a few genes are closely related to certain diseases. Therefore
some structure regularizers such as ℓ1 penalty [19] and ℓ∞ penalty [23] need to
be added to the MSVM models. With the addition of the structure regularizers,
the dual problems of the aforementioned MSVMs can be difficult to formulate
and hard to solve by standard second-order optimization methods.

In this paper, we focus on three “all-together” regularized MSVMs. Specifi-
cally, given a set of samples {xi}ni=1 in p-dimensional space and each xi with a
label yi ∈ {1, · · · , J}, we solve the constrained optimization problem

min
W,b

ℓG(W,b) + λ1‖W‖1 + λ2φ(W) +
λ3

2
‖b‖22, s.t. We = 0, e⊤

b = 0 (1)

where
ℓG(W,b) =

1

n

n∑

i=1

J∑

j=1

I(yi 6= j)[bj +w
⊤
j xi + 1]+

is generalized hinge loss function; I(yi 6= j) equals one if yi 6= j and zero

otherwise; [t]+ = max(0, t); wj denotes the jth column of W; e denotes the
vector of appropriate size with all ones; ‖W‖1 =

∑
i,j |wij |; φ(W) is some

regularizer specified below. Usually, the regularizer can promote the structure
of the solution and also avoid overfitting problems when the training sam-
ples are far less than features. The constraints We = 0, e⊤b = 0 are im-
posed to eliminate redundancy in W,b and are also necessary to make the loss
function ℓG Fisher-consistent [16]. The solution of (1) gives J linear classifiers
fj(x) = w⊤

j x + bj, j = 1, · · · , J . A new coming data point x can be classified
by the rule class(x) = argmax1≤j≤J fj(x).

We consider the following three different forms of φ(W):

elastic net: φ(W) = 1
2
‖W‖2F , (2a)

group Lasso: φ(W) =
∑p

j=1 ‖w
j‖2, (2b)

supnorm: φ(W) =
∑p

j=1 ‖w
j‖∞, (2c)

where wj denotes the jth row of W. They fit to data with different structures
and can be solved by a unified algorithmic framework. Note that we have added
the term λ3

2 ‖b‖22 in (1). A positive λ3 will make our algorithm more efficient
and easier to implement. The extra term usually does not affect the accuracy of
classification and variable selection as shown in [14] for binary classifications. If
λ3 happens to affect the accuracy, one can choose a tiny λ3. Model (1) includes
as special cases the models in [16] and [23] by letting φ be the one in (2a) and
(2c) respectively and setting λ1 = λ3 = 0. To the best of our knowledge, the
regularizer (2b) has not been considered in MSVM before. It encourages group
sparsity of the solution [22], and our experiments will show that (2b) can give
similar results as those by (2c). Our main contributions are: (i) the development

of a unified algorithmic framework based on the ADMM that can solve MSVMs
with the three different regularizers defined in (2); (ii) the proper use of the
Woodbury matrix identity [13] which can reduce the size of the linear systems
arising during the solution of (1); (iii) computational experiments on a variety of
datasets that practically demonstrate that our algorithms can solve large-scale
multiclass classification problems much faster than state-of-the-art second order
methods.

We use e and E to denote a vector and a matrix with all ones, respectively.
I is used for an identity matrix. Their sizes are clear from the context.

The rest of the paper is organized as follows. Section 2 gives our algorithm
for solving (1). Numerical results are given in section 3 on both synthetic and
real data. Finally, section 4 concludes this paper.

2 Algorithms

In this section we extend ADMM into the general optimization problems de-
scribed by (1). Due to lack of space we refer the reader to [3] for details of
ADMM. We first consider (1) with φ(W) defined in (2a) and then solve it with
φ(W) in (2b) and (2c) in a unified form. The parameter λ3 is always assumed
positive. One can also transform the MSVMs to quadratic or second-order cone
programs and use standard second-order methods to solve them. Nevertheless,
these methods are computationally intensive for large-scale problems. As shown
in section 3, ADMM is, in general, much faster than standard second-order
methods.

2.1 ADMM for solving (1) with φ defined by (2a)

Introduce auxiliary variables A = X⊤W + eb⊤ + E and U = W, where X =
[x1, · · · ,xn] ∈ R

p×n. Using the above auxiliary variables we can equivalently
write (1) with φ(W) defined in (2a) as follows

min 1
n

∑

i,j

cij [aij]+ + λ1‖U‖1 + λ2
2
‖W‖2F + λ3

2
‖b‖22

s.t. A = X⊤W+ eb⊤ +E, U = W,We = 0, e⊤b = 0.

(3)

The augmented Lagrangian3 of (3) is

L1(W,b,A,U,Π,Λ) = 1
n

∑

i,j

cij [aij]+ + λ1‖U‖1 + λ2
2
‖W‖2F + λ3

2
‖b‖22 + 〈Λ,W−U〉

+µ
2
‖W −U‖2F + 〈Π,X⊤W+ eb⊤ −A+E〉

+α
2
‖X⊤W + eb⊤ −A+E‖2F ,

(4)
where Π,Λ are Lagrange multipliers and α, µ > 0 are penalty parameters. The
ADMM approach for (3) can be derived by minimizing L1 alternatively with

3 We do not include the constraints We = 0, e⊤b = 0 in the augmented Lagrangian,
but instead we include them in (W,b)-subproblem; see the update (5a).

respect to (W,b) and (A,U) and updating the multipliers Π ,Λ, namely, at
iteration k,

(
W

(k+1),b(k+1)) = argmin
(W,b)∈D

L1

(
W,b,A(k),U(k),Π(k),Λ(k)), (5a)

(
A

(k+1),U(k+1)) = argmin
A,U

L1

(
W

(k+1),b(k+1),A,U,Π(k),Λ(k)), (5b)

Π
(k+1) = Π

(k) + α
(
X

⊤
W

(k+1) + e(b(k+1))⊤ −A
(k+1) +E

)
, (5c)

Λ
(k+1) = Λ

(k) + µ
(
W

(k+1) −U
(k+1)), (5d)

where D = {(W,b) : We = 0, e⊤b = 0}. The updates (5c) and (5d) are
simple. We next discuss how to solve (5a) and (5b).

Solution of (5a): Define P = [I;−e⊤] ∈ R
J×(J−1). Let Ŵ be the submatrix

consisting of the first J−1 columns ofW and b̂ be the subvector consisting of the

first J − 1 components of b. Then it is easy to verify that W = ŴP⊤,b = Pb̂
and problem (5a) is equivalent to the unconstrained optimization problem

min
Ŵ,b̂

λ2
2
‖ŴP⊤‖2F + 〈Λ(k),ŴP⊤〉+ λ3

2
‖b̂⊤P⊤‖22 +

µ
2
‖ŴP⊤ −U(k)‖2F

+〈Π(k),X⊤ŴP⊤ + eb̂⊤P⊤〉+ α
2
‖X⊤ŴP⊤ + eb̂⊤P⊤ −A(k) +E‖2F .

(6)

The first-order optimality condition of (6) is the linear system

[
αXX⊤ + (λ2 + µ)I αXe

αe⊤X⊤ nα+ λ3

] [
Ŵ

b̂⊤

]

=

(

XΘ −Λ(k) + µU(k)
)

P(P⊤P)−1

e⊤
(

αA(k) −Π(k) − αE
)

P(P⊤P)−1

 ,

(7)

where Θ = αA(k) −Π(k)−αE. The size of (7) is (p+1)× (p+1) and when p is
small, we can afford to directly solve it. However, if p is large, even the iterative
method for linear system (e.g., preconditioned conjugate gradient) can be very
expensive. In the case of “large p, small n”, we can employ the Woodbury matrix
identity (e.g., [13]) to efficiently solve (7). In particular, let D = block diag((λ2+
µ)I, λ3) and Z = [X; e⊤]. Then the coefficient matrix of (7) is D + αZZ⊤, and
by the Woodbury matrix identity, we have P(P⊤P)−1 = [I;0]− 1

J
E and

(D+ αZZ⊤)−1 = D−1 − αD−1Z(I+ αZ⊤D−1Z)−1Z⊤D−1 .

Note D is diagonal, and thus D−1 is simple to compute. I + αZ⊤D−1Z is
n × n and positive definite. Hence, as n ≪ p, (7) can be solved by solving a
much smaller linear system and doing several matrix-matrix multiplications. In
case of large n and p, one can perform a proximal gradient step to update W

and b, which results in a proximal-ADMM [8]. To the best of our knowledge,
this is the first time that the Woodbury matrix identity is used to substantially
reduce4 the computational work and allow ADMM to efficiently solve large-scale
multiclass SVMs. Solve (7) by multiplying (D+αZZ⊤)−1 to both sides. Letting

W(k+1) = ŴP⊤ and b(k+1) = Pb̂ gives the solution of (5a).

4 For the case of n ≪ p, we found that using the Woodbury matrix identity can be
about 100 times faster than preconditioned conjugate gradient (pcg) with moderate
tolerance 10−6 for the solving the linear system (7).

Solution of (5b): Note that A and U are independent of each other as W and
b are fixed. Hence we can separately update A and U by

A
(k+1) = argmin

A

1

n

∑

i,j

cij [aij]+ +
α

2

∥
∥X

⊤
W

(k+1) + e(b(k+1))⊤ +
1

α
Π

(k) +E−A
∥
∥2

F

U
(k+1) = argmin

U

λ1‖U‖1 +
µ

2

∥
∥W

(k+1) +
1

µ
Λ

(k) −U
∥
∥2

F
.

Both the above problems are separable and have closed form solutions

a
(k+1)
ij = T cij

nα

((

X
⊤
W

(k+1) + e(b(k+1))⊤ +
1

α
Π

(k) +E

)

ij

)

, ∀i, j, (8)

u
(k+1)
ij = S λ1

µ

((

W
(k+1) +

1

µ
Λ

(k)

)

ij

)

, ∀i, j, (9)

where

Tν(δ) =

δ − ν, δ > ν,
0, 0 ≤ δ ≤ ν,
δ, δ < 0,

and Sν(δ) = sign(δ)max(0, |δ| − ν). Putting the above discussions together, we
have Algorithm 1 for solving (1) with φ defined in (2a).

Algorithm 1: ADMM for (1) with φ(W) in (2a)

Input: n sample-label pairs {(xi, yi)}
n
i=1.

Choose: α, µ > 0 and (W0,b0,A0,U0,Π0,Λ0), k = 0.
while not converge do

Solve (7); let W(k+1) = ŴP⊤ and b(k+1) = Pb̂;

Update A(k+1) and U(k+1) by (8) and (9);

Update Π(k+1) and Λ(k+1) by (5c) and (5d);
Let k = k + 1

2.2 ADMM for solving (1) with φ defined by (2b) and (2c)

Firstly, we write (1) with φ(W) defined in (2b) and (2c) in the unified form of

min
W,b

ℓG(W,b) + λ1‖W‖1 +

p
∑

j=1

λ2‖w
j‖q +

λ3

2
‖b‖22, s.t.We = 0, e⊤

b = 0, (10)

where q = 2 for (2b) and q = ∞ for (2c). Introducing auxiliary variables A =
X⊤W + eb⊤ +E, U = W, and V = W, we can write (10) equivalently to

min 1
n

∑

i,j

cij [aij]+ + λ1‖U‖1 +
p∑

j=1

λ2‖v
j‖q +

λ3
2
‖b‖2

s.t. A = X⊤W+ eb⊤ +E, U = W, V = W, We = 0, e⊤b = 0.

(11)

The augmented Lagrangian of (11) is

L2(W,b,A,U,V,Π,Λ,Γ) =
1

n

∑

i,j

cij [aij]+ + λ1‖U‖1 +

p∑

j=1

λ2‖v
j‖q +

λ3

2
‖b‖22

+ 〈Π,X⊤
W+ eb

⊤ −A+E〉+
α

2
‖X⊤

W+ eb
⊤ −A+E‖2F

+ 〈Λ,W−U〉+
µ

2
‖W −U‖2F + 〈Γ ,W−V〉+

ν

2
‖W −V‖2F , (12)

where Π,Λ,Γ are Lagrange multipliers and α, µ, ν > 0 are penalty parameters.
The ADMM updates for (11) can be derived as

(
W

(k+1),b(k+1)
)
= argmin

(W,b)∈D
L2

(
W,b,A(k),U(k),V(k),Π(k),Λ(k),Γ (k)

)

(13a)
(
A

(k+1),U(k+1),V(k+1)) =argmin
A,U,V

L2

(
W

(k+1),b(k+1),A,U,V,Π(k),Λ(k),Γ (k))

(13b)

Π
(k+1) =Π

(k) + α
(
X

⊤
W

(k+1) + e(b(k+1))⊤ −A
(k+1) +E

)
(13c)

Λ
(k+1) =Λ

(k) + µ
(
W

(k+1) −U
(k+1)), (13d)

Γ
(k+1) =Γ

(k) + ν
(
W

(k+1) −V
(k+1)). (13e)

The subproblem (13a) can be solved in a similar way as discussed in section 2.1.

Specifically, first obtain (Ŵ, b̂) by solving
[
αXX⊤ + (ν + µ)I αXe

αe⊤X⊤ nα+ λ3

] [
Ŵ

b̂⊤

]

=

[(
XΞ −Λ(k) − Γ (k) + µU(k) + νV(k)

)
P(P⊤P)−1

e⊤
(

αA(k) −Π(k) − αE
)

P(P⊤P)−1

]

,

(14)

where Ξ = αA(k) − Π(k) − αE and then let W(k+1) = ŴP⊤, b(k+1) = Pb̂.
To solve (13b) note that A,U and V are independent of each other and can
be updated separately. The update of A and U is similar to that described in
section 2.1. We next discuss how to update V by solving the problem

V
(k+1) = argmin

V

p∑

j=1

λ2‖v
j‖q +

ν

2

∥
∥W

(k+1) +
1

ν
Γ

(k) −V
∥
∥2

F
(15)

Let Z = W(k+1) + 1
ν
Γ (k). According to [22], the solution of (15) for q = 2 is

(

v
(k+1)

)j

=

0, ‖zj‖2 ≤ λ2
ν

‖zj‖2−λ2/ν

‖zj‖2
zj , otherwise

,∀j. (16)

For q = ∞, the solution of (15) can be computed via Algorithm 2 (see [5] for
details). Putting the above discussions together, we have Algorithm 3 for solving
(1) with φ(W) given by (2b) and (2c).

2.3 Convergence results

Let us denote the kth iteration of the objectives of (3) and (11) as

F
(k)
1 = F1

(
W(k),b(k),A(k),U(k)

)
, F

(k)
2 = F2

(
W(k),b(k),A(k),U(k),V(k)

)
, (17)

and define
Z

(k)
1 =

(
W(k),b(k),A(k),U(k),Π(k),Λ(k)

)
,

Z
(k)
2 =

(
W(k),b(k),A(k),U(k),V(k),Π(k),Λ(k),Γ (k)

)
.

Theorem 1. Let {Z(k)
1 } and {Z(k)

2 } be the sequences generated by (5) and (13),

respectively. Then F
(k)
1 → F ∗

1 , F
(k)
2 → F ∗

2 , and ‖X⊤W(k) + e(b(k))⊤ + E −
A(k)‖F , ‖W(k) − U(k)‖F , ‖W(k) − V(k)‖F all converge to zero, where F ∗

1 and

F ∗
2 are the optimal objective values of (3) and (11), respectively. In addition, if

λ2 > 0, λ3 > 0 in (3), then Z
(k)
1 converges linearly.

The proof is based on [10,8] and due to the lack of space we omit it.

Algorithm 2: Algorithm for solving (15) when q = ∞
Let λ̃ = λ2

ν
and Z = W(k+1) + 1

ν
Γ (k).

for j = 1, · · · , p do

Let v = zj ;

if ‖v‖1 ≤ λ̃ then

Set
(

v(k+1)
)j

= 0.

else

Let u be the sorted absolute value vector of v: u1 ≥ u2 ≥ · · · ≥ uJ ;

Find r̂ = max
{

r : λ̃−
∑r

t=1(ut − ur) > 0
}

Let v
(k+1)
ji = sign(vi)min

(

|vi|, (
∑r̂

t=1 ut − λ̃)/r̂
)

, ∀i.

3 Numerical results

We now test the three different regularizers in (2) on two sets of synthetic data
and two sets of real data. As shown in [19] the L1 regularizedMSVM works better
than the standard “one-against-rest” MSVM in both classification and variable
selection. Hence, we choose to only compare the three regularized MSVMs. The
ADMM algorithms discussed in section 2 are used to solve the three models.
Until the preparation of this paper, we did not find much work on designing
specific algorithms to solve the regularized MSVMs except [19] which uses a
path-following algorithm to solve the L1 MSVM. To illustrate the efficiency of
ADMM, we compare it with Sedumi [18] which is a second-order method. We
call Sedumi in the CVX environment [12].

Algorithm 3: ADMM for (1) with φ(W) in (2b) and (2c)

Input: n sample-label pairs {(xi, yi)}
n
i=1.

Choose: α, µ, ν > 0, set k = 0 and initialize (W0,b0,A0,U0,V0,Π0,Λ0,Γ 0).
while not converge do

Solve (14); let W(k+1) = ŴP⊤ and b(k+1) = Pb̂;

Update A(k+1) and U(k+1) by (8) and (9);

Update V(k+1) by (16) if q = 2 and by Algorithm 2 if q = ∞;

Update Π(k+1), Λ(k+1) and Γ (k+1) by (13c), (13d) and (13e);

3.1 Implementation details

All our code was written in MATLAB, except the part of Algorithm 2 which
was written in C with MATLAB interface. We used λ3 = 1 for all three models.
In our experiments, we found that the penalty parameters were very important

for the speed of ADMM. By running a large set of random tests, we chose
α = 50J

n
, µ =

√
pJ in (4) and α = 50J

n
, µ = ν =

√
pJ in (12). Origins were used

as the starting points. As did in [21], we terminated ADMM for (3), that is, (1)
with φ(W) in (2a), if

max

{ ∣
∣F

(k+1)
1 −F

(k)
1

∣
∣

1+F
(k)
1

,

∥
∥
W

(k)−U
(k)
∥
∥

F√
pJ

,

∥
∥
X

⊤
W

(k)+e(b(k))⊤+E−A
(k)
∥
∥

F√
nJ

}

≤ 10−5,

and ADMM for (11), that is, (1) with φ(W) in (2b) and (2c), if

max

{ ∣
∣F

(k+1)
2 −F

(k)
2

∣
∣

1+F
(k)
2

,

∥
∥
X

⊤
W

(k)+e(b(k))⊤+E−A
(k)
∥
∥

F√
nJ

,

∥
∥
W

(k)−U
(k)
∥
∥

F√
pJ

,

∥
∥
W

(k)−V
(k)
∥
∥

F√
pJ

}

≤ 10−5.

In addition, we set a maximum number of iterations maxit = 5000 for ADMM.
Default settings were used for Sedumi. All the tests were performed on a PC
with an i5-2500 CPU and 3-GB RAM and running 32-bit Windows XP.

Table 1. Results of different models solved by ADMM and Sedumi on a five-class
example with synthetic data. The numbers in parentheses are standard errors.

Models
ADMM Sedumi

Accuracy time CZ IZ NR Accuracy time CZ IZ NR

elastic net 0.597(0.012) 0.184 39.98 0.92 2.01 0.592(0.013) 0.378 39.94 1.05 2.03
group Lasso 0.605(0.006) 0.235 34.94 0.00 3.14 0.599(0.008) 2.250 33.85 0.02 3.25
supnorm 0.606(0.006) 0.183 39.84 0.56 2.08 0.601(0.008) 0.638 39.49 0.61 2.21

3.2 Synthetic data

The first test is a five-class example with each sample x in a 10-dimensional
space. The data was generated in the following way: for each class j, the first
two components (x1, x2) were generated from the mixture Gaussian distribution
N (µj , 2I) where for j = 1, · · · , 5,

µj = 2[cos ((2j − 1)π/5) , sin ((2j − 1)π/5)],

and the remaining eight components were independently generated from stan-
dard Gaussian distribution. This kind of data was also tested in [19,23]. We
first chose best parameters for each model by generating n = 200 samples for
training and another n = 200 samples for tuning parameters. For elastic net,
we fixed λ2 = 1 since it is not sensitive and then searched the best λ1 over
C = {0, 0.001, 0.01 : 0.01 : 0.1, 0.15, 0.20, 0.25, 0.30}. The parameters λ1 and
λ2 for group Lasso and supnorm were selected via a grid search over C × C.
With the tuned parameters, we compared ADMM and Sedumi on n = 200
randomly generated training samples and n′ = 50, 000 random testing sam-
ples, and the whole process was independently repeated 100 times. The perfor-
mance of the compared models and algorithms were measured by accuracy (i.e.,
number of correctly predicted

total number), running time (sec), the number of correct zeros (CZ),
the number of incorrect zeros (IZ) and the number of non-zero rows (NR). We
counted CZ, IZ and NR from the truncated solution Wt, which was obtained

from the output solution W such that wt
ij = 0 if |wij | ≤ 10−3maxi,j |wij | and

wt
ij = wij otherwise. The average results are shown in Table 1, from which we

can see that ADMM produces similar results as those by Sedumi within less time.
Elastic net makes slightly lower prediction accuracy than that by the other two
models.

Table 2. Results of different models solved by ADMM and Sedumi on a four-class ex-
ample with synthetic data. The numbers in the parentheses are corresponding standard
errors.

Models
ADMM Sedumi

Accuracy time IZ NZ1 NZ2 NZ3 NZ4 Accuracy time IZ NZ1 NZ2 NZ3 NZ4
Correlation ρ = 0

elastic net 0.977(0.006) 0.27 13.8 37.6 36.9 36.8 37.0 0.950(0.013) 3.75 11.0 40.2 40.0 39.5 40.4
group Lasso 0.931(0.020) 0.46 30.4 33.7 33.4 33.2 33.2 0.857(0.022) 12.13 40.5 31.8 31.6 31.8 31.7
supnorm 0.924(0.025) 0.52 32.6 36.6 36.1 36.4 36.2 0.848(0.020) 13.93 46.6 34.2 33.8 33.7 33.5

Models Correlation ρ = 0.8

elastic net 0.801(0.018) 0.19 24.1 29.6 29.7 30.6 29.6 0.773(0.036) 3.74 15.7 35.4 36.3 36.0 35.7
group Lasso 0.761(0.023) 0.38 64.0 21.4 21.2 21.3 21.2 0.654(0.023) 12.30 89.7 17.3 17.6 17.5 17.3
supnorm 0.743(0.023) 0.45 63.1 34.1 34.0 33.9 34.2 0.667(0.016) 14.01 79.8 35.3 35.3 35.3 35.2

The second test is a four-class example with each sample in p-dimensional
space. The data in class j was generated from the mixture Gaussian distribution
N (µj ,Σj), j = 1, 2, 3, 4. The mean vectors and covariance matrices are µ2 =
−µ1,µ4 = −µ3,Σ2 = Σ1,Σ4 = Σ3, and

µ1 = (1, · · · , 1
︸ ︷︷ ︸

s

, 0, · · · , 0
︸ ︷︷ ︸

p−s

)⊤, µ3 = (0, · · · , 0
︸ ︷︷ ︸

s/2

, 1, · · · , 1
︸ ︷︷ ︸

s

, 0, · · · , 0
︸ ︷︷ ︸

p−3s/2

)⊤,

Σ1 =

[
ρEs×s + (1− ρ)Is×s

I(p−s)×(p−s)

]

,

Σ3 =

I s
2
× s

2

ρEs×s + (1− ρ)Is×s

I(p− 3s
2

)×(p− 3s
2

)

 .

This kind of data was also tested in [20,21] for binary classifications. We took
p = 500, s = 30 and ρ = 0, 0.8 in this test. As did in last test, the best parameters
for all models were tuned by first generating n = 100 training samples and an-
other n = 100 validation samples. Then we compared the different models solved
by ADMM and Sedumi with the selected parameters on n = 100 randomly gener-
ated training samples and n′ = 20, 000 random testing samples. The comparison
was independently repeated 100 times. The performance of different models and
algorithms were measured by prediction accuracy, running time (sec), the num-
ber of incorrect zeros (IZ), the number of nonzeros in each column (NZ1, NZ2,
NZ3, NZ4), where IZ, NZ1, NZ2, NZ3, NZ4 were counted in a similar way as
that in last test by first truncating the output solution W. Table 2 lists the
average results, from which we can see that the elastic net MSVM tends to give
best predictions. ADMM is much faster than Sedumi, and interestingly, ADMM

also gives higher prediction accuracies than those by Sedumi. This is probably
because the solutions given by Sedumi are sparser and have more IZs than those
by ADMM.

Table 3. Original distributions of SRBCT and leukemia data sets

Data set
SRBCT leukemia

NB RMS BL EWS total B-ALL T-ALL AML total

Training 12 20 8 23 63 19 8 11 38
Testing 6 5 3 6 20 19 1 14 34

3.3 Real data

This subsection tests the three different MSVMs on microarray classifications.
Two real data sets were used. One is the children cancer data set in [15], which
used cDNA gene expression profiles and classified the small round blue cell
tumors (SRBCTs) of childhood into four classes: neuroblastoma (NB), rhab-
domyosarcoma (RMS), Burkitt lymphomas (BL) and the Ewing family of tumors
(EWS). The other is the leukemia data set in [11], which used gene expression
monitoring and classified the acute leukemias into three classes: B-cell acute
lymphoblastic leukemia (B-ALL), T-cell acute lymphoblastic leukemia (T-ALL)
and acute myeloid leukemia (AML). The original distributions of the two data
sets are given in Table 3. Both the two data sets have been tested before on
certain MSVMs for gene selection; see [19,23] for example.

Each observation in the SRBCT dataset has dimension of p = 2308, namely,
there are 2308 gene profiles. We first standardized the original training data
in the following way. Let Xo = [xo

1, · · · ,xo
n] be the original data matrix. The

standardized matrix X was obtained by

xgj =
xo
gj −mean(xo

g1, · · · , x
o
gn)

std(xo
g1, · · · , x

o
gn)

, ∀g, j.

Similar normalization was done to the original testing data. Then we selected the
best parameters of each model by three-fold cross validation on the standardized
training data. The search range of the parameters is the same as that in the
synthetic data tests. Finally, we put the standardized training and testing data
sets together and randomly picked 63 observations for training and the remaining
20 ones for testing. The average prediction accuracy, running time (sec), number
of non-zeros (NZ) and number of nonzero rows (NR) of 100 independent trials
are reported in Table 4, from which we can see that all models give similar
prediction accuracies. ADMM produced similar accuracies as those by Sedumi
within less time while Sedumi tends to give sparser solutions because Sedumi is
a second-order method and more accurately solves the problems.

The leukemia data set has p = 7, 129 gene profiles. We standardized the
original training and testing data in the same way as that in last test. Then
we rank all genes on the standardized training data by the method used in [9].
Specifically, let X = [x1, · · · ,xn] be the standardized data matrix. The relevance

Table 4. Results of different models solved by ADMM and Sedumi on SRBCT and
Leukemia data sets

Data Models
ADMM Sedumi

Accuracy time NZ NR Accuracy time NZ NR

SRBCT
elastic net 0.996(0.014) 1.738 305.71 135.31 0.989(0.022) 8.886 213.67 96.71
group Lasso 0.995(0.016) 2.116 524.88 137.31 0.985(0.028) 42.241 373.44 96.27
supnorm 0.996(0.014) 3.269 381.47 114.27 0.990(0.021) 88.468 265.06 80.82

Leukemia
elastic net 0.908(0.041) 1.029 571.56 271.85 0.879(0.048) 30.131 612.16 291.71
group Lasso 0.908(0.045) 2.002 393.20 150.61 0.838(0.072) 76.272 99.25 44.14
supnorm 0.907(0.048) 2.211 155.93 74.60 0.848(0.069) 121.893 86.03 41.78

measure for gene g is defined as follows:

R(g) =

∑

i,j I(yi = j)(mj
g −mg)

∑

i,j I(yi = j)(xgi −mj
g)

, g = 1, · · · , p,

where mg denotes the mean of {xg1, · · · , xgn} and mj
g denotes the mean of

{xgi : yi = j}. According to R(g), we selected the 3,571 most significant genes.
Finally, we put the processed training and tesing data together and randomly
chose 38 samples for training and the remaining ones for testing. The process
was independently repeated 100 times. Table 4 tabulates the average results,
which show that all three models give similar prediction accuracies. ADMM gave
better prediction accuracies than those given by Sedumi within far less time. The
relatively lower accuracies given by Sedumi may be because it selected too few
genes to explain the diseases.

4 Conclusion

We have developed an efficient unified algorithmic framework for using ADMM
to solve regularized MSVS. By effectively using the Woodbury matrix identity we
have substantially reduced the computational effort required to solve large-scale
MSVMS. Numerical experiments on both synthetic and real data demonstrate
the efficiency of ADMM by comparing it with the second-order method Sedumi.

References

1. Bishop C.: Pattern Recognition and Machine Learning, Springer-Verlag, New York
(2006).

2. Bottou L., Cortes C., Denker J.S., Drucker H., Guyon I., Jackel L.D., LeCun Y.,
Muller U.A., Sackinger E., Simard P., et al.: Comparison of classifier methods: a
case study in handwritten digit recognition. In Proceedings of the 12th IAPR
International Conference on Pattern Recognition, volume 2, pages 77–82 (1994).

3. Boyd S., Parikh N., Chu E., Peleato B., and Eckstein J.: Distributed Optimiza-
tion and Statistical Learning via the Alternating Direction Method of Multipliers.
Foundations and Trends in Machine Learning, 3(1):1–122 (2010).

4. Bradley P.S. and Mangasarian O.L.: Feature selection via concave minimization
and support vector machines. In Proceedings of the Fifteenth International Con-
ference of Machine Learning (ICML’98), pages 82–90 (1998).

5. Chen X., Pan W., Kwok J.T., and Carbonell J.G.: Accelerated gradient method
for multi-task sparse learning problem. In Proceedings of the Ninth International
Conference on Data Mining (ICDM’09), pages 746–751. IEEE (2009).

6. Cortes C. and Vapnik V.: Support-vector networks. Machine learning, 20(3):273–
297 (1995).

7. Crammer K. and Singer Y. On the algorithmic implementation of multiclass kernel-
based vector machines. Journal of Machine Learning Research, 2: 265–292 (2002).

8. Deng W. and Yin W.: On the global and linear convergence of the generalized
alternating direction method of multipliers. Rice technical report TR12-14 (2012).

9. Dudoit S., Fridlyand J., and Speed T.P.: Comparison of discrimination methods for
the classification of tumors using gene expression data. Journal of the American
statistical association, 97(457):77–87 (2002).

10. Glowinski R.: Numerical methods for nonlinear variational problems. Springer
Verlag (2008).

11. Golub T.R., Slonim D.K., Tamayo P., Huard C., Gaasenbeek M., Mesirov J.P.,
Coller H., Loh M.L., Downing J.R., Caligiuri M.A., Bloomfield C.D., and Lan-
der E.S.: Molecular classification of cancer: class discovery and class prediction by
gene expression monitoring. Science, 286(5439):531–537 (1999).

12. Grant M. and Boyd S.: CVX - Matlab software for disciplined convex programming,
version 2.1. http://cvxr.com/cvx (2014).

13. Hager W.W.: Updating the inverse of a matrix. SIAM Review, 31:221–239 (1989).
14. Hsu C.W. and Lin C.J.: A comparison of methods for multiclass support vector

machines. Neural Networks, IEEE Transactions on, 13(2):415–425 (2002).
15. Khan J., Wei J.S., Ringnér M., Saal L.H., Ladanyi M., Westermann F., Berthold

F., Schwab M., Antonescu C.R., Peterson C., et al.: Classification and diagnostic
prediction of cancers using gene expression profiling and artificial neural networks.
Nature medicine, 7(6):673–679 (2001).

16. Lee Y., Y. Lin, and Wahba G.: Multicategory support vector machines. Journal
of the American Statistical Association, 99(465):67–81 (2004).

17. Platt J.C., Cristianini N., and Shawe-Taylor J.: Large margin dags for multiclass
classification. Advances in neural information processing systems, 12(3):547–553
(2000).

18. Sturm J.: Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric
cones. Optimization methods and software, 11(1-4):625–653 (1999).

19. Wang L. and Shen, X.: On L1-norm multiclass support vector machines. Journal
of the American Statistical Association, 102(478):583–594 (2007).

20. Wang L., Zhu J., and Zou, H.: Hybrid huberized support vector machines for
microarray classification and gene selection. Bioinformatics, 24(3):412–419 (2008).

21. Ye G.B., Chen Y., and Xie X.: Efficient variable selection in support vector ma-
chines via the alternating direction method of multipliers. In Proceedings of the
International Conference on Artificial Intelligence and Statistics (2011).

22. Yuan M. and Lin, Y.: Model selection and estimation in regression with grouped
variables. Journal of the Royal Statistical Society: Series B (Statistical Method-
ology), 68(1):49–67 (2006).

23. Zhang H., Liu Y., Wu Y., and Zhu J.: Variable selection for the multicategory svm
via adaptive sup-norm regularization. Electronic Journal of Statistics, 2:149–167
(2008).

http://cvxr.com/cvx

	Alternating direction method of multipliers for regularized multiclass support vector machines

