Abstract
We propose a novel semantic query expansion technique that enables inference of contextual information in queries and user information. In the present study, we detect and map bio entities such as gene, protein, and disease in a query to concept tuples, and incorporate user context data based on the PubMed query logs and user profile into the algorithm. In objective evaluation, we can see a concept tuple aided with UMLS concepts adds semantic information to the initial query. In subjective evaluation, we find that in a context-enabled search environment, where context terms that the users are interested in are combined into their initial search terms, users tend to assign higher relevance scores to the retrieval results by these queries.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bai, J., Nie, J.Y., Bouchard, H., Cao, G.: Using query contexts in information retrieval. In: ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 15–22 (2007)
Greenberg, J.: Optimal query expansion (QE) processing methods with semantically encoded structured thesauri terminology. J. Am. Soc. Inf. Sci. Technol. 52(6), 487–498 (2001)
Shamim Khan, M., Sebastian, S.: Enhanced web document retrieval using automatic query expansion. J. Am. Soc. Inf. Sci. Technol. 55(1), 29–40 (2004)
Stokes, N., Li, Y., Cavedon, L., Zobel, J.: Exploring criteria for successful query expansion in the genomic domain. Inf. Retr. Boston 12(1), 17–50 (2009)
Xu, X., Zhu, W., Zhang, X., Hu, X., Song, I.Y.: A comparison of local analysis, global analysis and ontology-based query expansion strategies for bio-medical literature search. In: IEEE International Conference on Systems, Man and Cybernetics (SMC 2006), vol. 4, pp. 3441–3446 (2006)
Srinivasan, P.: Query expansion and MEDLINE. Inf. Process. Manag. 32(4), 431–443 (1996)
Matos, S., Arrais, J.P., Maia-Rodrigues, J., Oliveira, J.L.: Concept-based query expansion for retrieving gene related publications from MEDLINE. BMC Bioinformatics, 11, 212 (2010)
Leroy, G., Chen, H.: Meeting medical terminology needs-the ontology-enhanced medical concept mapper. IEEE J. Biomed. Health. Inform. 5(4), 261–270 (2001)
Yang, Y., Chute, C.G.: An application of least squares fit mapping to text information retrieval. In: ACM SIGIR conference on Research and Development in Information Retrieval, pp. 281–290 (1992)
Aronson, A.R., Rindflesch, T.C.: Query expansion using the UMLS metathesaurus. In: Proc. AMIA. Symp., pp. 485–489 (1997)
DÃaz-Galiano, M.C., MartÃn-Valdivia, M.T., Ureña-López, L.A.: Query expansion with a medical ontology to improve a multimodal information retrieval system. Comput. Biol. Med. 39(4), 396–403 (2009)
Lu, Z., Kim, W., Wilbur, W.J.: Evaluation of query expansion using MeSH in PubMed. Inf. Retr. Boston 12(1), 69–80 (2009)
Jain, H., Thao, C., Zhao, H.: Enhancing electronic medical record retrieval through semantic query expansion. Information Systems and E-Business Management 10(2), 165–181 (2012)
Zeng, Q.T., Crowell, J., Plovnick, R.M., Kim, E., Ngo, L., Dibble, E.: Assisting consumer health information retrieval with query recommendations. J. Am. Med. Inform. Assoc. 13(1), 80–90 (2006)
Mosa, A.S.M., Yoo, I.: A study on PubMed search tag usage pattern: association rule mining of a full-day PubMed query log. BMC Med. Inform. Decis. Mak. 13(1), 8 (2013)
Billerbeck, B., Scholer, F., Williams, H.E., Zobel, J.: Query expansion using associated queries. In: Proc. ACM Int. Conf. Inf. Knowl. Manag., pp. 2–9 (2003)
Cui, H., Wen, J.R., Nie, J.Y., Ma, W.Y.: Probabilistic query expansion using query logs. In: Proc. Int. World Wide Web Conf., pp. 325–332 (2002)
Huang, C.K., Chien, L.F., Oyang, Y.J.: Relevant term suggestion in interactive web search based on contextual information in query session logs. J. Am. Soc. Inf. Sci. Technol. 54(7), 638–649 (2003)
Fonseca, B.M., Golgher, P., Pôssas, B., Ribeiro-Neto, B., Ziviani, N.: Concept-based interactive query expansion. In: Proc. ACM Int. Conf. Inf. Knowl. Manag., pp. 696–703 (2005)
Fan, J.W., Friedman, C.: Semantic classification of biomedical concepts using distributional similarity. J. Am. Med. Inform. Assoc. 14(4), 467–477 (2007)
Bodenreider, O., McCray, A.T.: Exploring semantic groups through visual approaches. J. Biomed. Inform. 36(6), 414–432 (2003)
Cohen, T., Schvaneveldt, R., Widdows, D.: Reflective Random Indexing and indirect inference: a scalable method for discovery of implicit connections. J. Biomed. Inform. 43(2), 240–256 (2010)
Jiang, J.J., Conrath, D.W.: Semantic similarity based on corpus statistics and lexical taxonomy. In: International Conference on Research in Computational Linguistics (1997). arXiv preprint cmp-lg/9709008
Hersh, W.R., Buckley, C., Leone, T.J., Hickam D.H.: OHSUMED: an interactive retrieval evaluation and new large test collection for research. In: ACM SIGIR conference on Research and Development in Information Retrieval, pp. 192–201 (1994)
Liu, X., Croft, W.B.: Statistical language modeling for information retrieval. Annual Review of Information Science and Technology 39, 2–32 (2005)
Veerasamy, A., Belkin, N.J.: Evaluation of a tool for visualization of information retrieval results. In: SIGIR on Research and Development in Information Retrieval, pp. 85–92 (1996)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Kim, E.HJ., Oh, J.S., Song, M. (2015). Exploring Context-Sensitive Query Reformulation in a Biomedical Digital Library. In: Allen, R., Hunter, J., Zeng, M. (eds) Digital Libraries: Providing Quality Information. ICADL 2015. Lecture Notes in Computer Science(), vol 9469. Springer, Cham. https://doi.org/10.1007/978-3-319-27974-9_10
Download citation
DOI: https://doi.org/10.1007/978-3-319-27974-9_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-27973-2
Online ISBN: 978-3-319-27974-9
eBook Packages: Computer ScienceComputer Science (R0)