Abstract
In this paper we propose a methodology to build multiclass classifiers for the human-robot interaction problem. Our solution uses kernel-based classifiers and assumes that each data type is better represented by a different kernel. The kernels are then combined into one single kernel that uses all the dataset involved in the HRI process. The results on real data shows that our proposal is capable of obtaining lower generalization errors due to the use of specific kernels for each data type. Also, we show that our proposal is more robust when presented to noise in either or both data types.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Goodrich, M., Schultz, A.: Human-robot Interaction: a survey. Found. Trends Hum.-Comput. Interact. 1, 203–275 (2007)
Behnke, S., Veloso, M., Visser, A., Xiong, R. (eds.): RoboCup 2013: Robot World Cup XVII, LNCS. Springer, Berlin (2014)
Van Beek, L., Chen, K., Holz, D., Matamoros, M., Rascon, C., Rudinac, M., Ruiz del Solar, J., Sugiura, K., Wachsmuth, S.: RoboCupHome 2015: Rule and Regulations (2015)
Bhattacharya, S., Czejdo, B., Perez, N.: Gesture classification with machine learning using kinect sensor data. In: Third International Conference on Emerging Applications of Information Technology, pp. 348–351. IEEE Press, Kolkata (2012)
Kinect Gesture Recognition for Interactive System. http://cs229.stanford.edu/proj2012/ZhangDuLiKinectGestureRecognitionforInteractiveSystem.pdf
Huang, J., Lee, C., Ma, J.: Gesture Recognition and Classification using the Microsoft Kinect. Final Project CS229 Machine Learning. Stanford University, Stanford (2012)
Dhanalakshimi, P., Palanivel, S., Ramaligam, V.: Classification of audio signals using SVM and RBFNN. Expert Syst. Appl. 36, 6069–6075 (2009)
Sarachaga, G., Sartori, V., Vignoli, L.: Identificacin Automtica de Resumen en Canciones. Proyecto de fin de carrera, Universidad de la Repblica, Uruguay (2006)
Suresh, V., Mohan, C., Kumaraswamy, R., Yegnanarayana, B.: Content-based video classification using support vector machines. In: Pal, N.R., et al. (eds.) ICONIP 2004. LNCS, vol. 3316, pp. 726–731. Springer, Heidelberg (2004)
Subashini, K., Palanivel, S., Ramalingam, V.: Audio-Video based classification using SVM and AANN. Int. J. Comput. Appl. 53(18), 43–49 (2012)
Gönen, M.M., Alpaydin, E.: Multiple Kernel Learning Algorithms. J. Mach. Learn. Res. 12, 2211–2268 (2011)
Manevitz, L., Yousef, M.: One-Class SVMs for document classication. J. Mach. Learn. Res. 2, 139–154 (2001)
Scholkopf, B., Platt, J.C., Shawe-Taylor, J., Smola, A.J., Williamson, R.C.: Estimating the support of a high-dimensional distribution. Technical report, Microsoft Research MSR-TR-99-87 (1999)
Chang, C.C., Lin, C.J.: LIBSVM : a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2(3), 27:1–27:27 (2011)
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Rodriguez, S., Pérez, K., Quintero, C., López, J., Rojas, E., Calderón, J. (2016). Identification of Multimodal Human-Robot Interaction Using Combined Kernels. In: Snášel, V., Abraham, A., Krömer, P., Pant, M., Muda, A. (eds) Innovations in Bio-Inspired Computing and Applications. Advances in Intelligent Systems and Computing, vol 424. Springer, Cham. https://doi.org/10.1007/978-3-319-28031-8_23
Download citation
DOI: https://doi.org/10.1007/978-3-319-28031-8_23
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-28030-1
Online ISBN: 978-3-319-28031-8
eBook Packages: EngineeringEngineering (R0)