Skip to main content

When the Game Gets Difficult, then it is Time for Mimicry

  • Chapter
  • First Online:
Recent Advances in Nonlinear Speech Processing

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 48))

  • 890 Accesses

Abstract

The computing community shows significant interest for the detection of mimicry , one of the names designating the tendency of interacting people to converge towards common behavioural patterns. This work shows experiments where speaker verification techniques, originally designed to detect fraudulent attempts to imitate others, are used to automatically detect the phenomenon. Furthermore, the experiments show that mimicry tends to be more frequent when people deal with harder collaborative tasks, thus suggesting that one of the functions of the phenomenon is to make communication easier or more effective in case of difficulties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    FAVE (Forced Alignment and Vowel Extraction) Program Suite, I. Rosenfelder, J. Fruehwald, K. Evanini and Y. Jiahong.

References

  1. Aguilar, L., Downey, G., Krauss, R., Pardo, J., Lane, S., Bolger, N.: A dyadic perspective on speech accommodation and social connection: Both partners’ rejection sensitivity matters. J. Personal. (2015)

    Google Scholar 

  2. Babel, M.: Dialect divergence and convergence in New Zealand english. Lang. Soc. 39(04), 437–456 (2010)

    Article  Google Scholar 

  3. Babel, M.: Evidence for phonetic and social selectivity in spontaneous phonetic imitation. J. Phon. 40(1), 177–189 (2012)

    Article  Google Scholar 

  4. Babel, M., Bulatov, D.: The role of fundamental frequency in phonetic accommodation. Lang. Speech 55(2), 231–248 (2012)

    Article  Google Scholar 

  5. Baker, R., Hazan, V.: DiapixUK: task materials for the elicitation of multiple spontaneous speech dialogs. Behav. Res. Methods 43(3), 761–770 (2011)

    Article  Google Scholar 

  6. Bimbot, F., Bonastre, J.F., Fredouille, C., Gravier, G., Magrin-Chagnolleau, I., Meignier, S., Merlin, T., Ortega-García, J., Petrovska-Delacrétaz, D., Reynolds, D.: A tutorial on text-independent speaker verification. EURASIP J. Appl. Signal Process. 2004, 430–451 (2004)

    Article  Google Scholar 

  7. Bousmalis, K., Mehu, M., Pantic, M.: Towards the automatic detection of spontaneous agreement and disagreement based on nonverbal behaviour: A survey of related cues, databases, and tools. Image Vis. Comput. 31(2), 203–221 (2013)

    Article  Google Scholar 

  8. Bulatov, D.: The effect of fundamental frequency on phonetic convergence. Phonology lab annual report, University of California at Berkeley (2009)

    Google Scholar 

  9. Burgoon, J.K., Stern, L.A., Dillman, L.: Interpersonal Adaptation: Dyadic interaction patterns. Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

  10. Chetouani, M.: Role of inter-personal synchrony in extracting social signatures: Some case studies. In: Proceedings of the Workshop on Roadmapping the Future of Multimodal Interaction Research Including Business Opportunities and Challenges, pp. 9–12 (2014)

    Google Scholar 

  11. Delaherche, E., Chetouani, M., Mahdhaoui, A., Saint-Georges, C., Viaux, S., Cohen, D.: Interpersonal synchrony: a survey of evaluation methods across disciplines. IEEE Trans. Affect. Comput. 3(3), 349–365 (2012)

    Article  Google Scholar 

  12. Giles, H., Coupland, J., Coupland, N.: Contexts of Accommodation: Developments in Applied Sociolinguistics. Cambridge University Press, Cambridge (1991)

    Book  Google Scholar 

  13. Henry, K., Sonderegger, M., Keshet, J.: Automatic measurement of positive and negative voice onset time. In: Proceedings of Interspeech (2012)

    Google Scholar 

  14. Jayagopi, D., Hung, H., Yeo, C., Gatica-Perez, D.: Modeling dominance in group conversations using nonverbal activity cues. IEEE Trans. Audio Speech Lang. Process. 17(3), 501–513 (2009)

    Article  Google Scholar 

  15. Pardo, J.S.: Reflections on phonetic convergence: speech perception does not mirror speech production. Lang. Linguist. Compass 6(12), 753–767 (2012)

    Article  Google Scholar 

  16. Purnell, T.C.: Convergence and contact in milwaukee: evidence from select african american and white vowel space features. J. Lang. Soc. Psychol. 28(4), 408–427 (2009)

    Article  Google Scholar 

  17. Salamin, H., Vinciarelli, A.: Automatic role recognition in multiparty conversations: an approach based on turn organization, prosody, and conditional random fields. IEEE Trans. Multimed. 14(2), 338–345 (2012)

    Article  Google Scholar 

  18. Schuller, B., Batliner, A.: Computational Paralinguistics: Emotion, Affect and Personality in Speech and Language Processing. Wiley (2013)

    Google Scholar 

  19. Tobin, S.: Phonetic accommodation in spanish-english and korean-english bilinguals. In: Proceedings of Meetings on Acoustics, vol. 19, p. 060087 (2013)

    Google Scholar 

  20. Vinciarelli, A., Pantic, M., Bourlard, H.: Social Signal Processing: survey of an emerging domain. Image Vis. Comput. J. 27(12), 1743–1759 (2009)

    Article  Google Scholar 

  21. Vinciarelli, A., Pantic, M., Heylen, D., Pelachaud, C., Poggi, I., D’Errico, F., Schroeder, M.: Bridging the gap between social animal and unsocial machine: a survey of Social Signal Processing. IEEE Trans. Affect. Comput. 3(1), 69–87 (2012)

    Article  Google Scholar 

  22. Zeng, Z., Pantic, M., Roisman, G., Huang, T.: A survey of affect recognition methods: audio, visual, and spontaneous expressions. IEEE Trans. Pattern Anal. Mach. Intell. 31(1), 39–58 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Vinciarelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Solanki, V., Vinciarelli, A., Stuart-Smith, J., Smith, R. (2016). When the Game Gets Difficult, then it is Time for Mimicry. In: Esposito, A., et al. Recent Advances in Nonlinear Speech Processing. Smart Innovation, Systems and Technologies, vol 48. Springer, Cham. https://doi.org/10.1007/978-3-319-28109-4_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28109-4_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28107-0

  • Online ISBN: 978-3-319-28109-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics