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Abstract. Proactive secret sharing (PSS) schemes are designed for set-
tings where long-term confidentiality of secrets is required, specifically,
when all participating parties may eventually be corrupted. PSS schemes
periodically refresh secrets and reset corrupted parties to an uncorrupted
state; in PSS the corruption threshold of parties is replaced with a corrup-
tion rate which cannot be violated. In dynamic proactive secret sharing
(DPSS) the group of participating parties can vary during the course
of execution. Accordingly, DPSS is ideal when the set of participating
parties changes over the lifetime of the secret or where removal of par-
ties is necessary if they become severely corrupted. This paper presents
the first DPSS scheme with optimal amortized per-secret communica-
tion in the number of parties, n: This paper requires O(1) communi-
cation, as compared to O(n4) or exp(n) in previous work. We present
perfectly and statistically secure schemes with near-optimal threshold in
each case. We also describe how to construct a communication-efficient
dynamic proactively-secure multiparty computation (DPMPC) protocol
which achieves the same thresholds.

Keywords: Proactive security · Secret sharing · Mobile secret sharing ·
Dynamic groups · Secure multiparty computation

1 Introduction

Secret sharing [6,31] is a foundational primitive in cryptography, especially in
secure computation. A secret sharing scheme typically consists of a protocol
for sharing a secret (or multiple secrets) and a protocol for reconstructing the
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shared secret(s). The secret sharing protocol distributes shares of the secret
among n parties in the presence of an adversary who may corrupt up to t parties;
security of the secret sharing scheme ensures that such an adversary will learn
no information about the secret.

However, traditional secret sharing may be insufficient in some real-world
settings; specifically, settings that may require a secret to be secured for a long
period of time, especially with respect to the ability of an adversary to even-
tually corrupt all parties. Traditional (threshold-based) secret sharing schemes
are insecure once t + 1 parties have been corrupted. Of particular concern are
distributed storage and computing settings in the presence of advanced persis-
tent threats who, given sufficient time, will successfully corrupt enough parties
to break the threshold that guarantees security. To address this issue, Ostrovsky
and Yung [28] introduced the proactive security model. In this model, the execu-
tion of the protocol(s) is divided into phases. The adversary is allowed to corrupt
and decorrupt parties at will, under the constraint that no more than a threshold
number of parties are corrupt in any given phase. This means that every party
may eventually become corrupt subject to the corruption rate constraint. Such
an adversary is called a mobile adversary.1

While standard proactively-secure protocols are able to satisfy security
requirements of long-term storage and computation, they lack the ability to
change the number of parties during the course of the protocol. Such a restraint
is particularly challenging in the case of long-term storage or computation, which
was one of the reasons that the proactive security model was constructed in the
first place. We refer to secret sharing schemes that are both proactively-secure
and allow the set of parties to dynamically change as dynamic proactive secret
sharing (DPSS) schemes. Such schemes have also been the subject of numerous
papers [17,30,33,34] but none of them has satisfying (linear or constant) commu-
nication complexity. The dynamic setting allows for the reality that some parties
(deployed as physical or virtual servers) may be attacked to the point of not being
able to be reset to a pristine, uncorrupted state (e.g., they may become physi-
cally damaged). When the set of parties can be dynamically changed, this issue
could be addressed by excluding the severely corrupted one(s) entirely (and, ide-
ally, include new uncorrupted ones). In addition, DPSS within large distributed
systems enables a truly “moving target defense”, where the set of participating
nodes is a smaller, dynamically changing subset of the whole distributed system
that is therefore more difficult to target for attack.

We argue that adopting efficient DPSS schemes in the future may help pre-
vent large-scale compromises of servers that store user data, often at financial
institutions or large enterprises [27,32]. Such breaches show an increasing need
for secure long-term storage solutions. Standard secret sharing can address this
issue by distributing data to avoid single points of compromise or failure, but

1 The term “mobile” is heavily used in the secure computation literature: “dynamic”
secret sharing, as discussed in this paper, has historically been called “mobile” secret
sharing (for instance, see [30]), which is a completely different concept than the
mobile adversary definition.
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given enough time, an adversary may be able to compromise all the servers
that store the data. Proactive secret sharing partially addresses this issue by
refreshing and recovering, yet still has no means of securing against a server
that becomes “permanently” compromised (e.g., by compromising its boot sys-
tem and/or firmware). Dynamic proactive secret sharing addresses this issue
by allowing the set of servers to change dynamically in response to corruptions
and removing permanently compromised servers. Furthermore, the total number
of servers may change, thereby increasing the concrete number of servers that
would have to be corrupted to exceed the threshold corruption rate. Thus in
response to an attack, the threshold may be temporarily raised to increase secu-
rity, and when the attack is resolved, the threshold may be reduced by reducing
the number of participating servers to increase efficiency. Our goal is therefore
to construct a communication-efficient DPSS scheme, particularly one that can
be used as a building block in a system for storing large data files and where
the proactive refresh and recovery of shares becomes a performance bottleneck
when the number of parties (or servers) increases. While we acknowledge that
several other layers of security must be developed for a complete data storage
solution to be secure against a mobile adversary, we argue that constructing an
efficient DPSS is an important step towards realizing this goal though.

1.1 Techniques

We first briefly outline the techniques utilized in the rest of the paper.

Batched Secret Sharing. One of the foundational techniques allowing us to
achieve optimal amortized communication complexity is batched secret sharing
[21]. Such sharings are used to encode a “batch” of multiple secrets as distinct
points on a single polynomial, and then distribute shares to each party as in
standard Shamir secret sharing [31]. The number of secrets stored in the poly-
nomial (the “batch size”) is chosen to be O(n). This allows the parties to share
O(n) secrets with O(n) total communication complexity so that the amortized
complexity is O(1) per secret.

Hyper-Invertible Matrices. A hyper-invertible matrix [5] satisfies the
property that any square submatrix formed by removing rows and columns is
invertible. Hyper-invertible matrices are used in our protocol for efficient error
detection. If a vector of n − 3t secret sharings is concatenated with t random
sharings and then multiplied by a n × (n − 2t) hyper-invertible matrix, then
each party can be given one of the sharings in the resultant vector of n sharings
without revealing any information about the n − 3t secrets. Furthermore, if any
of the original n − 2t sharings are malformed (meaning that the shares do not
lie on a polynomial of correct degree), then at least 2t + 1 of the resultant n
sharings will be malformed. This allows the parties to verify that sharings are
correct while preserving the privacy of the secrets. Since n − 3t (which is O(n))
sharings are verified by sending n (also O(n)) sharings to n parties, this only
requires constant amortized communication bandwidth.
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Party Virtualization. Party virtualization [8] is a method for transforming
a multiparty protocol by replacing each party in the protocol with a “virtual”
party. The virtual party is a committee of parties that perform a multiparty
protocol to emulate the actions of an individual party in the original (untrans-
formed) protocol. The advantage of this technique is that it allows the corrup-
tion threshold to be raised from that of the untransformed protocol. In [15], the
authors demonstrate how to raise the corruption threshold to near-optimal while
only increasing the communication complexity by a constant factor, which is the
approach we take in this paper.

1.2 Contributions

In this paper we present a new communication-optimal dynamic proactive secret
sharing (DPSS) scheme. In addition to a protocol for distributing shares of a
secret and a protocol for reconstructing the secret, a DPSS scheme must also
contain a protocol for refreshing the shares and (in the case of a malicious adver-
sary) for recovering the shares amongst a group of parties that may change from
one refresh to the next. A refresh protocol changes the shares held by the parties
such that old shares (before the refresh) cannot be combined with new shares
(after the refresh) to gain any information about the secret. A recovery proto-
col allows decorrupted parties to recover shares that may have been destroyed
or altered by the adversary. The communication complexity of the refresh and
recovery protocols are often a bottleneck for proactive secret sharing schemes.

As will be defined in Sect. 4.1 (Definition 4), a DPSS scheme consists of
three protocols: Share, Redistribute, and Open that distribute, redistribute, and
reconstruct shares of a secret, respectively. For the protocols Share and Open,
we use the protocols RobustShare and Reco (respectively) from [15].

Our main contribution is the construction of a new Redistribute protocol
with the following properties: (1) Optimal (Constant Amortized) Communica-
tion Bandwidth: Out of currently published protocols for DPSS, ours has the
lowest amortized communication complexity. We achieve O(1) per-secret amor-
tized communication complexity (measured as the number of field elements).2

(2) No Cryptographic Assumptions: Ours is the first DPSS scheme that provides
information-theoretic security without making any cryptographic assumptions.
(3) Eliminating Party Virtualization: The most efficient DPSS protocol to date
is that of [30] where “party virtualization” is utilized when the set of parties
is decreased.3 “Party virtualization” occurs when each real party holds inter-
nal data (i.e., shares) corresponding to some virtual party. That is, there are n

2 We only claim that the amortized communication complexity is optimal. Reducing
the non-amortized complexity is a possible area for future work.

3 Note that the term “party virtualization” has a different meaning in [30] than is
typically used, either in Sect. 1.1 or in other secure computation literature such as
[15]; we use here the terminology of [30] in quotes and only in this paragraph.
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parties, but there are n + v virtual parties, and while each real party gets her
own private share, each real party also gets all v shares of all the virtual parties.
As stated in [30], this technique is “somewhat unsatisfying theoretically because
using this method to reduce the threshold does not reduce the asymptotic com-
putational overhead of the protocol.” In this paper, we present a DPSS protocol
that does not use party virtualization as in [30] and thus reduces the asymptotic
computational and communication overhead of the protocol.

Finally, as an application of our DPSS scheme we briefly describe how to
construct a dynamic proactively-secure multiparty computation (DPMPC) pro-
tocol.

1.3 Outline

The rest of the paper is organized as follows: In Sect. 2 we discuss related work.
The roadblocks facing constructing an efficient DPSS scheme are described in
Sect. 3. We give the necessary technical preliminaries in Sect. 4 and then give the
details of our DPSS scheme in Sect. 5 (while some of the subprotocols are deferred
to the full version of this paper [4]). In Sect. 6 we describe how the threshold
may be raised in the statistical security setting. We show how our DPSS scheme
can be applied to secure multiparty computation in Sect. 7. Security definitions
and proofs are given in the full version of this paper [4].

2 Related Work

The same work [28] introducing the proactive security model also contained the
first proactive secret sharing (PSS) scheme and proactively-secure multiparty
computation (PMPC) protocol. PSS was the central tool introduced in [28], and
there has been significant follow up work on PSS schemes, both in the synchro-
nous and asynchronous network models (see Table 1 for a comparison). Cur-
rently the most efficient (non-dynamic) PSS scheme is [3], which has an optimal
O(1) amortized communication complexity per secret share, is UC-secure and
achieves near-optimal thresholds for both perfect and statistical cases. Currently,
the most efficient DPSS scheme is that of [30], which works in asynchronous net-
works, provides cryptographic security and achieves a corruption threshold of
t/n < 1/3, but has prohibitive communication complexity in the number of
parties, namely O(n4). Compared to [30], our DPSS protocols require only con-
stant (amortized) communication are perfectly (resp. statistically) secure with
near-optimal corruption thresholds of t/n < 1/3 − ε (resp. t/n < 1/2 − ε) and
work with synchronous networks. Extending our work to asynchronous networks
and improving the threshold and communication bounds of [30] is still an open
problem.

In addition to proactive secret sharing, proactive security has played a fun-
damental role in several areas, including proactively secure threshold encryp-
tion and signature schemes [7,10,18–20,25,26,29] (and in particular [1], which
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also sketches a definition of UC security in the proactive framework), intrusion-
resilient signatures [24], eavesdropping games [22], pseudorandomness [11], and
state-machine replication [12,13].

Table 1. Comparison of Non-Dynamic Proactive Secret Sharing (PSS) and Dynamic
Proactive Secret Sharing (DPSS) Schemes. Threshold is for each reboot phase. Our
communication complexity is amortized per bit.

Paper Dynamic Network Security Threshold Communication complexity

[33] Yes synch. Cryptographic t/n < 1/2 exp(n)

[34] Yes asynch. Cryptographic t/n < 1/3 exp(n)

[9] No asynch. Cryptographic t/n < 1/3 O(n4)

[30] Yes asynch. Cryptographic t/n < 1/3 O(n4)

[23] No synch. Cryptographic t/n < 1/2 O(n2)

[3] No synch. Perfect t/n < 1/3−ε O(1)

[3] No synch. Statistical t/n < 1/2−ε O(1)

This paper Yes synch. Perfect t/n < 1/3−ε O(1)

This paper Yes synch Statistical t/n < 1/2−ε O(1)

The only two known general PMPC protocols are [28] and [3]. The former
protocol is proven secure in the stand-alone corruption model and requires at
least O(Cn3) communication complexity (where C is the size of the circuit),
while the latter is UC-secure and has near-linear communication complexity
of O(DC log2(C)polylog(n) + D poly(n) log2(C)) (where D is the depth of the
circuit). We provide a dynamic PMPC protocol in this paper, whereas neither
of the above PMPC protocols is dynamic.

3 Roadblocks in Constructing Communication-Optimal
DPSS

The most efficient DPSS scheme to date is that of [30], and the most efficient
PSS scheme to date is that of [3]. In this section, we explain why straightforward
modifications of either of these would not produce a DPSS scheme with optimal
communication requirements.

In [3], the refresh is performed by having the parties generate new polynomials
Q to mask the old polynomials H; then each party generates a share of the new
polynomial by locally computing her share of H + Q and relabeling H ← H + Q.
Although this works in the non-dynamic proactive setting, in the dynamic proac-
tive setting this would allow t corrupt parties in the old group and an additional
t′ corrupt parties in the new group to learn their shares on the new polynomial
(where t′ is the corruption threshold in the new group). This could be enough for
the adversary to reconstruct the secret(s) rendering the scheme insecure.
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In [30], this issue is prevented by constructing the polynomial Q such that
no party in the old group knows her share of Q. More specifically, the parties in
the old group construct a polynomial Rj for each P ′

j in the new group such that
Rj(βj) = 0. Then the Q and the Rj are generated simultaneously so that each
party in the old group only learns her share of Q+Rj for each j. This technique
preserves security but would not yield the optimal communication bandwidth
that we aim for. Generating one polynomial for each party in the new group
would result in a communication complexity of at least O(n2) for masking O(n)
secrets while our goal is O(1) (amortized) communication per secret.

In this paper we provide a solution that generates the polynomials Q without
revealing any share of Q to the parties in the old group, and maintains optimal
communication efficiency. This technique is one of the main contributions of the
paper and is described in detail in Sect. 5.2.

4 Preliminaries

In this section we provide some preliminaries required for the rest of the paper.

4.1 Definitions

We first provide definitions of secret sharing (SS), proactive secret sharing (PSS),
and dynamic proactive secret sharing (DPSS) schemes. The definitions below are
for perfectly secure protocols; the definitions for statistically secure protocols
are the same, except that the termination, correctness, and secrecy properties
are allowed to be violated with negligible probability. As our protocols are for
sharings of multiple secrets, we write the protocols for a vector of secrets over a
finite field F, treating the case in which the vector is of length one as a special
case.

Definition 1. A secret sharing scheme consists of two protocols, Share and
Open, which allows a dealer to share a vector of secrets s among a group of
n parties such that the secrets remain secure against an adversary, and allows
any group of n − t uncorrupted parties to reconstruct the secrets.

Assuming that no more than t parties are corrupt throughout the execution
of the protocols, the following three properties hold:

– Termination: All honest parties will complete the execution of Share and
Open.

– Correctness: Upon completing Share, there is a fixed vector v ∈ F
W (where W

is the number of secrets to be shared) such that all honest parties will output
v upon completion of Open. Furthermore, if the dealer was honest during the
execution of Share, then v = s.

– Secrecy: If the dealer is uncorrupted, then the adversary gains no information
on s.
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The definition of a PSS scheme is essentially the same as the definition of
an SS scheme, with the addition of Refresh and Recovery protocols for secur-
ing against a mobile adversary. The Refresh protocol refreshes data to prevent
a mobile adversary from learning secrets, and the Recovery protocols allows de-
corrupted parties to recover their secrets, preventing the adversary from destroy-
ing data. Before defining a PSS scheme, we need to define refresh and recovery
phases.

Definition 2. A refresh phase (resp. recovery phase) is the period of time between
two consecutive executions of the Refresh (resp. Recovery) protocol. Further-
more, the period between Share and the first Refresh (resp. Recovery) is a phase,
and the period between the last Refresh (resp. Recovery) and Open is a phase. Any
Refresh (resp. Recovery) protocol is considered to be in both adjacent phases.

Definition 3. A proactive secret sharing scheme consists of four protocols,
Share, Refresh, Recover, and Open, which allows a dealer to share a vector of
secrets s among a group of n parties such that the secrets remain secure against a
mobile adversary, and allows any group of n−t uncorrupted parties to reconstruct
the secrets. The Refresh protocol prevents the mobile adversary from discovering
the secrets, and the Recover protocol prevents the adversary from destroying the
secrets.

Assuming that no more than t parties are corrupt during any recovery phase,
the following two properties hold:

– Termination: All honest parties will complete each execution of Share, Refresh,
Recover, and Open.

– Correctness: Same as in Definition 1.

Assuming that no more than t parties are corrupt during any refresh phase, the
following property holds:

– Secrecy: Same as in Definition 1.

For the definition of a DPSS scheme, we combine the Refresh and Recover
protocols into one protocol, Redistribute, which also allows transferring the set of
secrets from one group of parties to another and change the threshold. Similarly,
we combine refresh phase and recovery phase, and refer to it simply as a phase.

As the number of parties changes, the threshold must change as well. For
any given number of parties, n, there is a corresponding threshold, t, which will
depend on the particular security and network assumptions of the scheme. Let
τ(n) denote the threshold corresponding to n, and let n(i) denote the number of
parties during phase i.

Definition 4. A dynamic proactive secret sharing scheme consists of three pro-
tocols, Share, Redistribute, and Open, which allows a dealer to share a vector
of secrets s among a group of n(1) parties such that the secrets remain secure
against a mobile adversary, and allows any group of n(L) − t(L) uncorrupted
parties to reconstruct the secrets (where L is the last phase). The Redistribute
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protocol prevents the mobile adversary from discovering or destroying the secrets,
and allows the set of parties and the threshold to change.

Assuming that for each i, no more than t(i) = τ(n(i)) parties are corrupt
during phase i, the following three properties hold:

– Termination: All honest parties currently engaged in the protocol will complete
each execution of Share, Redistribute, and Open.

– Correctness: Same as in Definition 1.
– Secrecy: Same as in Definition 1.

4.2 Notation and Technical Details

We assume that there are W secrets in some finite field F stored among a party
set P of size n. The secrets are stored as follows:

We fix some generator ζ of F∗. Each batch of � secrets is stored in a polynomial
H of degree d (where the value of d depends on the security model as described
below). The polynomial H is chosen such that H(ζj) is the jth secret for j ∈ [�]
and H(ζ�+j) is random for j ∈ [d−�+1]. (We use the notation [X] to denote the
set {1, . . . , X}, and we let [X]×[Y ] denote the Cartesian product of the two sets.
We let [A,B] denote the set of integers [A, . . . , B]). Each party Pi ∈ P is given
H(αi) as her share of the secret. In our scheme we use the protocol RobustShare
from [15] to perform the sharing. When the secrets are to be opened, all parties
send their shares to some party, who interpolates the shares on the polynomials
to reconstruct the secrets. We use the protocol Reco from [15] to perform secret
opening.

Our new redistribution protocol given in Sect. 5 redistributes the secrets to a
new set of parties P ′ of size n′. The parties in P ′ are denoted by P ′

j for j ∈ [n′].
The share of a party P ′

j ∈ P ′ is H(βj). We require that αi �= βj for each i, j

(and that no αi or βj is equal to ζk for any k ∈ [�]). Since we use the labels t, �,
and d for P, we use the labels t′, �′, and d′ for P ′.

For simplicity of notation, our redistribution protocol below assumes that
W is a multiple of 4�2(n − 3t). If W is not a multiple of 4�2(n − 3t), we can
generate random sharings of batches to make it so. Using RanDouSha from [15],
this can be done with poly(n) communication complexity, and since it adds only
a poly(n) amount of data to W , this does not affect the overall communication
complexity of redistributing W secrets.

In this paper we provide a perfectly secure and a statistically secure version of
the redistribution protocol required to construct our DPSS scheme. For the per-
fectly (statistically) secure protocol, the threshold can be made arbitrarily close
to n/3 (n/2). We describe the threshold, batch size, and degree of polynomials
for the two versions below.

In the perfectly secure protocol, we fix three nonzero constants η, θ, and ι
that satisfy η + θ + ι < 1/3. The batch size, �, is the highest power of 2 not
greater than �ηn�; the threshold is t = �θn�; and the degree of the polynomials
that share the secrets are d = �+t+�ιn�−1. The number of parties may increase
or decrease by no more than a factor of 2 at each redistribution. Furthermore,
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the number of parties cannot decrease so much that the corrupt parties in the
old group can interpolate the new polynomials (i.e., d′ − �′ ≥ t); and the number
of parties cannot increase so much that the uncorrupted parties in the old group
cannot interpolate the new polynomials in the presence of corrupt shares (i.e.,
d′ + 2t + 1 ≤ n).

In the statistically secure protocol, we initially pick a low threshold, and then
later raise the threshold using the party virtualization4 technique of [15]. The
protocol in Sect. 5 is written as a perfectly secure protocol with a lower threshold,
and then this is raised using statistically secure virtualization (see Sect. 6 for a
discussion of this). For the initial, low threshold, we select the batch size, �, to
be the highest power of 2 not greater than n/4; the threshold is t < n/16; and
the degree of the polynomials is d = �+2t−1. In the statistically secure version,
we assume that t will increase or decrease by a factor of no more than 2 at each
redistribution (i.e., t/2 ≤ t′ ≤ t).

Note that while (theoretically) it may seem that there is no reason to raise
n without raising t, in a real world setting one may increase n while fixing t
precisely to increase the concrete number of additional servers that an adversary
has to corrupt. To simplify demonstration in this paper we assume that n is
minimal for a given t (i.e., we assume that n could not be decreased without
decreasing t).

Our redistribution protocol requires the use of a hyper-invertible matrix.
A hyper-invertible matrix is such that any square submatrix formed by remov-
ing rows and columns is invertible. It is shown in [5] that one can con-
struct a hyper-invertible matrix as follows: Pick 2a distinct field elements
θ1, . . . , θa, φ1, . . . , φa ∈ F, and let M be the matrix be such that if (y1, . . . , ya)T =
M(x1, . . . , xa)T , then the points (θ1, y1), . . . , (θa, ya) lie on the polynomial of
degree ≤ a − 1 which evaluates to xj at φj for each j ∈ [a]. (In other words, M
interpolates the points with x-coordinates θ1, . . . , θa on a polynomial given the
points with x-coordinates φ1, . . . , φa on that polynomial.) Then any submatrix
of M is hyper-invertible. For our protocol, we let M be some (publicly known)
hyper-invertible matrix with n rows and n − 2t columns.

Throughout the protocol, the Berlekamp-Welch algorithm is used to interpo-
late polynomials in the presence of corrupt shares introduced by the adversary.
As was noted in [16], if M is as above and y = Mx, then we can also use
Berlekamp-Welch to “interpolate” x from y if the adversary corrupts no more
than t coordinates of y.

5 The Redistribution Protocol

In this section, we provide the details of the protocol that redistributes sharings
of secrets from one set of parties to another. The first portion of the protocol
changes the threshold of the polynomials that share the secret (if the number of
servers is changing). Recall that the batch size is the highest power of two not

4 The term “party virtualization” has a different meaning in [30] than it has in [15].
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greater than �ηn� (resp. n/4) in the perfectly (resp. statistically) secure protocol.
This means that a change in the threshold/number of servers does not necessarily
lead to a change in batch size. Thus there are four cases to consider: (1) The
threshold is decreasing, and the batch size is not changing; (2) the threshold is
decreasing, and the batch size is decreasing; (3) the threshold is increasing, and
the batch size is not changing; and (4) the threshold is increasing, and the batch
size is increasing. The second portion of the protocol refreshes the sharings and
allows parties in the new group to learn their shares.

To simplify exposition, the protocol is broken into several sub-protocols.
The four protocols Threshold Changei for i = 1, 2, 3, 4 correspond to the four
cases outlined in the previous paragraph. The protocol Refresh Recovery per-
forms refresh and recovery.

In order to change the set of parties, the current (honest) parties must agree
on which parties to remove and which parties to add. This could be determined
by the parties jointly invoking a voting algorithm, by a trusted administrator
making the decision, or by following some pre-determined schedule. How exactly
this is implemented is beyond the scope of this paper.

We now provide an overview and the intuition behind the operation of the
protocol.

5.1 Overview of Threshold Change

To simplify the illustration of the operation of the protocol we will treat Thresh-
old Change2 as an example. In this case we are decreasing the threshold and
batch size. Since we restrict the batch size to be a power of 2, the batch size will
be cut in half (that is, �′ = �/2). If the parties had access to an uncorruptible
trusted party, then the parties could have the trusted party change the threshold
and batch size for a polynomial H as follows:

1. Each party sends all their shares of the degree d polynomial H to the trusted
party.

2. The trusted party constructs two new polynomials h1 and h2 of degree d′

such that h1(ζj) = H(ζj) and h2(ζj) = H(ζ�′+j) for each j ∈ [�′]. Fresh
randomness is used for to determine the points hi(ζj) for i = 1, 2 and j =
[�′ + 1, d′ + 1].

3. The trusted party sends each party their shares of h1 and h2.

In the absence of a trusted party, the parties emulate this simplified protocol
using hyper-invertible matrices. The parties will take a vector of n−3t sharings,
add to this t extra random sharings, and then via local computations, multiply
the vector by a n × n − 2t hyper-invertible matrix to get a vector of n sharings.
Each party is assigned one of these n sharings and is sent all shares of this
sharing from the other parties. Then each party acts as the trusted party in the
steps above. The fact that the original vector of n−3t sharings was padded with
an extra t sharings prevents the adversary from learning any information on the
secrets.
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Once each party is done acting as the trusted party, she then sends the shares
of the results to the other parties. Each party, upon receiving the n (or fewer)
shares, can apply the Berlekamp-Welch algorithm to interpolate the vector of n
shares in the presence of errors to reconstruct the pre-image under multiplication
by the hyper-invertible matrix, which is a vector of n−2t shares. The first n−3t
of these are taken to be the party’s shares of the new sharings.

In the case where the trusted party performs the operations, fresh randomness
is generated by the trusted party to use in the new sharings. When the parties
jointly perform this operation without a trusted party, they instead generate
random sharings R, apply a hyper-invertible matrix to these sharings (as they
did with the sharings of the actual secrets), and use the points on the resultant
sharings as randomness for the new sharing polynomials.

5.2 Overview of Refresh and Recovery

The protocol Refresh Recovery is a modification of the protocol Block-Redistribute
from [3] that is still secure in the dynamic setting (recall that a straightforward
adoption is insecure as discussed in Sect. 3). The recovery is performed in essen-
tially the same way as in [3], with the exception that in our scheme the shares
are transferred to a new group of parties instead of back to the same group.
(The scheme in [3] is for PSS, not DPSS.)

In the dynamic setting, refresh cannot be performed as in [3]. As mentioned
in Sect. 3, we need a way for the parties to mask the polynomials H with poly-
nomials Q such that no party in the old group knows a share of H + Q and
no party in the new group knows a share of the original H.5 In [3], the par-
ties generate sharings U that share their shares, and then each party receives
a linear combination of these shares that will allow her to recover her shares
(if they were corrupted). In our protocol, the parties in the old group generate
sharings U that share their shares (just as in [3]), and they additionally generate
sharings V , some of which store random data and some of which store a batch
of all zeros; then each party in the new group receives a linear combination of
the U ’s and the V ’s such that this linear combination stores the party’s share of
H + Q for some masking polynomial Q. Thus the parties in the new group see
their shares of H + Q without seeing their shares of H, while the parties in the
old group—because the V were generated randomly—do not know any share of
Q (and hence they do not know any share of H + Q).

5 However, if there is overlap between the old and new groups of servers, such that
Pi = P ′

j for some Pi ∈ P and some P ′
j ∈ P ′, and if αi = βj , then this party will

know her share of both H and H + Q. Nevertheless, this does not cause a security
problem, as it does not cause the threshold to be violated; even in this case, only
t parties in the old group know shares of H, and only t′ parties in the new group
know shares of H + Q.
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5.3 Protocol Specification

In this section we describe the specification of our redistribution protocol. As
stated in Definition 4, a DPSS scheme consists of three protocols, Share, Redis-
tribute (which we describe in this section), and Open. For the protocols Share
and Open, we use the protocols RobustShare and Reco (respectively) from [15].
Our contribution is the construction of the redistribution protocol (Fig. 1).

The protocol RobustShare allows the parties to share O(n2) secrets with
O(n2) communication complexity using batch sharing. This is accomplished with
hyper-invertible matrices to ensure robustness. The protocol Reco opens a batch
of secrets by sending each share to whichever party is supposed to learn the
secret. That party then performs error detection/correction to interpolate the
secrets in the presence of (possibly) corrupt shares. The protocol RanDouSha
from [15] is also used as a subprotocol in our redistribution protocol. The pro-
tocol RanDouSha generates random sharings of degree d and additional sharings
of the same secrets using degree 2d polynomials with constant amortized com-
munication bandwidth. However, for our protocols we do not use the degree 2d
sharings. There are some instances in which we require a variant of RanDouSha
that generates sharings of batches of all zeros. Modifying the protocol to do this
is straightforward, as is the modification of the security proof.

The input to the protocol is a t, P, Corr, t′, P ′ and a collection of poly-
nomials H

(k,m)
a for (a, k, m) ∈ [�] × [n − 3t] × [B] that store the secrets.

1. If t′ �= t, then one of the following steps is executed:
1.1 If t′ < t and �′ = �, invoke Threshold Change1.
1.2 If t′ < t and �′ < �, invoke Threshold Change2.
1.3 If t′ > t and �′ = �, invoke Threshold Change3.
1.4 If t′ > t and �′ > �, invoke Threshold Change4.

2. Invoke Refresh Recovery.

Fig. 1. Redistribute.

As seen in Fig. 1, there are four cases for threshold change. To simplify the
treatment we only focus on case 2 (see Fig. 2), which is when the threshold is
decreasing and the batch size is decreasing, and defer the other three cases to
the full version of this paper [4].

The following subprotocol (Fig. 3) describes how refresh and recovery is per-
formed. This subprotocol will be executed at each redistribution regardless of
whether the threshold is changing.

After Refresh Recovery is completed, the parties relabel the H
(k,m)
a again so

that k varies from 1 to n′ − 3t′ instead of n − 3t. The relabeling is performed in
such a way that it preserves lexicographical order as described in the last steps
of protocols Threshold Change2 and Threshold Change4.
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polynomials R
(k,m)
a of degree ≤ d for k ∈ [n − 2t] and a ∈ [2�] (where

m ∈ [B]).
2. Define H̃

(k,m)
a for k ∈ [n] by

(
H̃(1,m)

a , . . . , H̃(n,m)
a

)T

= M
(
H(1,m)

a , . . . , H(n−2t,m)
a

)T

,

and similarly define R̃
(k,m)
a for k ∈ [n]. Each party locally computes

their shares of these polynomials and sends his share of each H̃
(j,m)
a and

R̃
(j,m)
a to party Pj .

3. Each Pi uses Berlekamp-Welch to interpolate the shares of H̃
(i,m)
a and

R̃
(i,m)
a received in the previous step.

4. Each Pi computes (shares of) the unique polynomials h̃
(i,m)
2a−1, h̃

(i,m)
2a of

degree ≤ d′ for a ∈ [�] and m ∈ [B] that satisfy the following:
4.1 h̃

(i,m)
2a−1(ζ

j) = H̃
(i,m)
a (ζj) for j ∈ [�′].

4.2 h̃
(i,m)
2a−1(ζ

�′+j) = R̃
(i,m)
2a−1(ζ

j) for j ∈ [d′ − �′ + 1].
4.3 h̃

(i,m)
2a (ζj) = H̃

(i,m)
a (ζ�′+j) for j ∈ [�′].

4.4 h̃
(i,m)
2a (ζ�′+j) = R̃

(i,m)
2a (ζj) for j ∈ [d′ − �′ + 1].

5. Each Pi sends each h̃
(i,m)
a (αj) to each Pj .

6. If we define h
(k,m)
a to be the unique polynomials of degree ≤ d′ satisfying

6.1 h
(k,m)
2a−1 (ζj) = H

(k,m)
a (ζj) for j ∈ [�′],

6.2 h
(k,m)
2a−1 (ζ�′+j) = R

(k,m)
2a−1 (ζj) for j ∈ [d′ − �′ + 1],

6.3 h
(k,m)
2a (ζj) = H

(k,m)
a (ζ�′+j) for j ∈ [�′],

6.4 h
(k,m)
2a (ζ�′+j) = R

(k,m)
2a (ζj) for j ∈ [d′ − �′ + 1],

then it is clear that
(
h̃(1,m)

a , . . . , h̃(n,m)
a

)T

= M
(
h(1,m)

a , . . . , h(n−2t,m)
a

)T

.

So each party uses Berlekamp-Welch to interpolate their shares of the
h
(k,m)
a from the shares of the h̃

(k,m)
a received in the previous step.

7. We place a lexicographical order on the polynomials H
(k,m)
a by assign-

ing to the polynomial the vector (m, k, a) and using the lexicographi-
cal order on these 3-dimensional vectors to induce an ordering on the
polynomials. We similarly place a lexicographical order on the polyno-
mials h

(k,m)
a . To simplify notation throughout the rest of the protocol,

we now relabel
{

H
(k,m)
a

}
m = 1, . . . , 4B
k = 1, . . . , n − 3t
a = 1, . . . , �′

{
h
(k,m)
a

}
m = 1, . . . , B
k = 1, . . . , n − 3t
a = 1, . . . , 2�

in
such a way that this map preserves lexicographical order. We then re-
label B 4B.

Lowering the Threshold, Batch Size Decreases
Since we assume that the number of parties decreases by no more than

a factor of 2, we know that �′ = �/2.
1. The parties invoke RanDouSha to generate masking polynomials H

(k,m)
a

of degree ≤ d for k ∈ [n − 3t + 1, n − 2t] and a ∈ [�], as well as random

Fig. 2. Threshold Change2.
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1. Double Sharing Batched Secrets
1.1 The parties generate sharings of �tB random sharings by invok-

ing RanDouSha. We will denote these random secrets by H
(k,m)
a ,

where a and m range over the same values as before, but k ∈
[n − 3t + 1, n − 2t].

1.2 Each party batch-shares all of his shares of each
H

(k,m)
a using RobustShare. That is, Pi chooses polyno-

mials U (i,1,m), . . . , U (i,(n−2t),m) of degree ≤ d′ such that
U (i,k,m)(ζj) = H

(k,m)
j (αi) for j ∈ [�] and U (i,k,m)(ζ�′+j) is

random for j ∈ [d′ − �′ + 1] and shares them via RobustShare.
2. Verifying Correctness

2.1 Define H̃
(k,m)
a and Ũ

(k,m)
a for k ∈ [n] by

(
H̃(1,m)

a , . . . , H̃(n,m)
a

)T

= M
(
H(1,m)

a , . . . , H(n−2t,m)
a

)T

and
(
Ũ (1,m)

a , . . . , Ũ (n,m)
a

)T

= M
(
U (1,m)

a , . . . , U (n−2t,m)
a

)T

.

Each party in P locally computes their shares of these polynomials.
2.2 Each party in P sends all their shares of H̃

(k,m)
a and Ũ (i,k,m) to

party Pk for each a, i, and m.
2.3 Each Pk uses Berlekamp-Welch on the shares of each Ũ (i,k,m) to

interpolate Ũ (i,k,m)(ζj) for each j ∈ [�′].
2.4 Each Pk uses Berlekamp-Welch on the shares of each H̃

(k,m)
a . to

interpolate H̃(i,k,m)(αi) for each i ∈ [n].
2.5 Each Pk checks if the shares of H̃

(k,m)
a are consistent with the

interpolation of the polynomial Ũ (i,k,m). That is, Pk checks if
Ũ (i,k,m)(ζj) = H̃

(k,m)
j (αi) for each j ∈ [�′]. If some Ũ (i,k,m) does

not pass this check, then Pk sends (Pk, accuse, Pi) to each party
in P ′.

2.6 Each P ′
j ∈ P ′ uses the accusations sent in the previous step to

determine a set Corr′
j of parties in P that might be corrupt. More

specifically, P ′
j reads through the list of accusations, and adds par-

ties to Corr′
j according to the following rule: If neither of the parties

in the current accusation are in Corr′
j , then add both of them to

Corr′
j ; otherwise, ignore the accusation.

3. Share Transfer

Fig. 3. Refresh Recovery.
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3.1 Each P ′
j ∈ P ′ selects a set Gj of parties in P − Corrj such that

|Gj | = n − 2t. Then P ′
j sends this set to each member of Gj .

3.2 For each P ′
j ∈ P ′, let {z

(j)
1 , . . . , z

(j)
n−2t} denote the set of indices

of parties in Gj . Let λj,i denote the Lagrange coefficients for in-
terpolating P ′

j ’s share of a secret from the shares of parties in Gj

(i.e. for a polynomial f of degree ≤ d′, f(βj) = λj,1f(α
z
(j)
1

)+ · · ·+
λj,n−2tf(α

z
(j)
n−2t

)).

3.3 The parties in P execute RanDouSha to generate degree d′ poly-
nomials V (j,k,m) for (j, k, m) ∈ [�′ + 1, d′ + 1] × [n − 3t] × [B]. The
parties in P also use RanDouSha to generate degree d′ polynomials
V (j,k,m) for (j, k,m) ∈ [�′]× [n− 3t]× [B] that are random subject
to the constraint that V (j,k,m)(ζw) = 0 for each w ∈ [�′].

3.4 Define degree d′ polynomials Q
(k,m)
a for (a, k, m) ∈ [�′]×[n−3t]×[B]

by Q
(k,m)
a (ζw) = 0 for w ∈ [�′] and Q

(k,m)
a (ζw) = V (w,k,m)(ζa) for

w ∈ [�′ + 1, d′ + 1]. Let μj,i denote the Lagrange coefficients for
interpolating P ′

j ’s share of a secret from the points at ζi for i ∈
[d′ +1] (i.e. for a polynomial f of degree ≤ d′, f(βj) = μj,1f(ζ1)+
· · · + μj,d′+1f(ζd′+1).)

3.5 For each k ∈ [n − 3t], each m ∈ [B], and each j ∈ [n′], each party
in Gj sends his share of

λj,1U
(z

(j)
1 ,k,m) + · · · + λj,n−2tU

(z
(j)
n−2t,k,m)

+μj,1V
(1,k,m) + · · · + μj,d′+1V

(d′+1,k,m)

to P ′
j .

3.6 Each P ′
j uses Berlekamp-Welch to interpolate the polynomials re-

ceived in the previous step for each k ∈ [n − 3t] and each m ∈ [B].
Since for each a ∈ [�′],

λj,1U
(z

(j)
1 ,k,m)(ζa) + · · · + λj,n−2tU

(z
(j)
n−2t,k,m)(ζa)

+ μj,1V
(1,k,m)(ζa) + · · · + μj,d′+1V

(d′+1,k,m)(ζa)

= λj,1H
(k,m)
a (α

z
(j)
1

) + · · · + λj,n−2tH
(k,m)
a (α

z
(j)
n−2t

)

+ μj,1Q
(k,m)
a (ζ1) + · · · + μj,d′+1Q

(k,m)
a (ζd′+1)

= H(k,m)
a (βj) + Q(k,m)

a (βj).

P ′
j has his share of each batch of refreshed data.

Fig. 3. (continued)
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6 Party Virtualization

As stated in Sect. 1.2, we do not require “party virtualization” as defined in [30].
However for the statistical version of our protocol, we require the use of a party
virtualization technique similar to that in [14] (note that these are different tech-
niques as noted before in Sect. 1.2). The technique, initially introduced in [8],
replaces an individual party with a committee of parties that emulates the
actions of an individual party. This is done such that the number of corrupt
committees is lower than the number of corrupt parties. This allows us to raise
the threshold in the statistical case from the initial threshold of t < n/16 to
t < (1/2− ε)n for arbitrary ε > 0. In [2], the authors show how to perform party
virtualization such that there is a constant number of communication rounds.
We refer the reader to [2,14] for details.

Changing the threshold when party virtualization is used is fairly straightfor-
ward. The only requirement is that the threshold of the original (non-virtualized)
protocol still satisfies t < n/16 when the threshold changes. During redistribu-
tion, the parties in the new group will be arranged into committees as in the old
group, and shares will be transferred from the virtual parties in the old group to
the virtual parties in the new group as specified in [2].

7 Dynamic Proactive Multiparty Computation

Our DPSS scheme can be used to construct a dynamic proactive secure multi-
party computation (DPMPC) protocol. A secure multiparty computation (MPC)
protocol allows a set of parties to compute a function of their private inputs
remaining secure against an adversary who may corrupt some of the parties.
A DPMPC protocol is an MPC protocol secure against a mobile adversary in
which the set of parties performing the computation and the corruption thresh-
old may change during the course of the protocol.6

In [3], the authors show how to proactivize the MPC scheme of [14] by exe-
cuting a refresh and recovery protocol between each layer of circuit computation.
To construct our DPMPC scheme, we execute our Redistribute protocol between
each circuit layer as in [3].
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6 Although the set of parties may change throughout the course of the protocol, the
inputs of the original set of parties are used to compute the circuit.
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