Skip to main content

Efficient Lung Cancer Cell Detection with Deep Convolution Neural Network

  • Conference paper
  • First Online:
Patch-Based Techniques in Medical Imaging (Patch-MI 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9467))

Included in the following conference series:

Abstract

Lung cancer cell detection serves as an important step in the automation of cell-based lung cancer diagnosis. In this paper, we propose a robust and efficient lung cancer cell detection method based on the accelerated Deep Convolution Neural Network framework(DCNN). The efficiency of the proposed method is demonstrated in two aspects: (1) We adopt a training strategy, learning the DCNN model parameters from only weakly annotated cell information (one click near the nuclei location). This technique significantly reduces the manual annotation cost and the training time. (2) We introduce a novel DCNN forward acceleration technique into our method, which speeds up the cell detection process several hundred times than the conventional sliding-window based DCNN. In the reported experiments, state-of-the-art accuracy and the impressive efficiency are demonstrated in the lung cancer histopathological image dataset.

This work was partially supported by U.S. NSF IIS-1423056, CMMI-1434401, CNS-1405985.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  2. Bernardis, E., Stella, X.Y.: Pop out many small structures from a very large microscopic image. Med. Image Anal. 15(5), 690–707 (2011)

    Article  Google Scholar 

  3. Nath, S.K., Palaniappan, K., Bunyak, F.: Cell segmentation using coupled level sets and graph-vertex coloring. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4190, pp. 101–108. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  4. Arteta, C., Lempitsky, V., Noble, J.A., Zisserman, A.: Learning to detect cells using non-overlapping extremal regions. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part I. LNCS, vol. 7510, pp. 348–356. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  5. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Computer Vision and Pattern Recognition (2014)

    Google Scholar 

  6. Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief nets. Neural Comput. 18(7), 1527–1554 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. Li, R., Zhang, W., Suk, H.-I., Wang, L., Li, J., Shen, D., Ji, S.: Deep learning based imaging data completion for improved brain disease diagnosis. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014, Part III. LNCS, vol. 8675, pp. 305–312. Springer, Heidelberg (2014)

    Google Scholar 

  8. Li, H., Zhao, R., Wang, X.: Highly efficient forward and backward propagation of convolutional neural networks for pixelwise classification (2014). arXiv preprint arXiv:1412.4526

  9. Team, N.L.S.T.R., et al.: The national lung screening trial: overview and study design. Radiology 258, 243–253 (2011)

    Google Scholar 

  10. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., Darrell, T.: Caffe: Convolutional architecture for fast feature embedding (2014). arXiv preprint arXiv:1408.5093

  11. Huang, J., Huang, X., Metaxas, D.: Simultaneous image transformation and sparse representation recovery. In: 2008 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2008, pp. 1–8. IEEE (2008)

    Google Scholar 

  12. Huang, J., Huang, X., Metaxas, D.: Learning with dynamic group sparsity. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 64–71. IEEE (2009)

    Google Scholar 

  13. Huang, J., Zhang, S., Li, H., Metaxas, D.: Composite splitting algorithms for convex optimization. Comput. Vision Image Underst. 115(12), 1610–1622 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank NVIDIA for GPU donation and the National Cancer Institute for access to NCI’s data collected by the National Lung Screening Trial. The statements contained herein are solely those of the authors and do not represent or imply concurrence or endorsement by NCI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junzhou Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Xu, Z., Huang, J. (2015). Efficient Lung Cancer Cell Detection with Deep Convolution Neural Network. In: Wu, G., Coupé, P., Zhan, Y., Munsell, B., Rueckert, D. (eds) Patch-Based Techniques in Medical Imaging. Patch-MI 2015. Lecture Notes in Computer Science(), vol 9467. Springer, Cham. https://doi.org/10.1007/978-3-319-28194-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28194-0_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28193-3

  • Online ISBN: 978-3-319-28194-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics