Abstract
This paper presents a new clustering-based algorithm for noisy image segmentation. Fuzzy C-Means (FCM), empowered with a new similarity metric, acts as the clustering method. The common Euclidean distance metric in FCM has been modified with information extracted from a local neighboring window surrounding each pixel. Having different local features extracted for each pixel, Particle Swarm Optimization (PSO) is utilized to combine them in a weighting scheme while forming the proposed similarity metric. This allows each feature to contribute to the clustering performance, resulting in more accurate segmentation results in noisy images compared to other state-of-the-art methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Zhuang, H., Low, K.-S., Yau, W.-Y.: Multichannel pulse-coupled-neural-network-based color image segmentation for object detection. IEEE Trans. Ind. Electron. 59(8), 3299–3308 (2012)
AntúNez, E., Marfil, R., Bandera, J.P., Bandera, A.: Part-based object detection into a hierarchy of image segmentations combining color and topology. Pattern Recogn. Lett. 34(7), 744–753 (2013)
Ferrari, V., Tuytelaars, T., Van Gool, L.: Simultaneous object recognition and segmentation by image exploration. In: Ponce, J., Hebert, M., Schmid, C., Zisserman, A. (eds.) Toward Category-Level Object Recognition. LNCS, vol. 4170, pp. 145–169. Springer, Heidelberg (2006)
Kang, Y., Yamaguchi, K., Naito, T., Ninomiya, Y.: Multiband image segmentation and object recognition for understanding road scenes. IEEE Trans. Intell. Transp. Syst. 12(4), 1423–1433 (2011)
Mei, X., Lang, L.: An image retrieval algorithm based on region segmentation. Appl. Mech. Mater. 596, 337–341 (2014)
Zhang, J.-Y., Zhang, W., Yang, Z.-W., Tian, G.: A novel algorithm for fast compression and reconstruction of infrared thermographic sequence based on image segmentation. Infrared Phys. Technol. 67, 296–305 (2014)
Mahalingam, T., Mahalakshmi, M.: Vision based moving object tracking through enhanced color image segmentation using haar classifiers. In: Proceedings of the 2nd International Conference on Trendz in Information Sciences and Computing, TISC-2010, pp. 253–260 (2010)
Zhang, Q., Kamata, S., Zhang, J.: Face detection and tracking in color images using color centroids segmentation. In: 2008 IEEE International Conference on Robotics and Biomimetics, ROBIO 2008, pp. 1008–1013 (2009)
Unnikrishnan, R., Pantofaru, C., Hebert, M.: Toward objective evaluation of image segmentation algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 29(6), 929–944 (2007)
Wang, X.-Y., Wang, Q.-Y., Yang, H.-Y., Bu, J.: Color image segmentation using automatic pixel classification with support vector machine. Neurocomputing 74(18), 3898–3911 (2011)
Cai, W., Chen, S., Zhang, D.: Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation. Pattern Recogn. 40(3), 825–838 (2007)
Mirghasemi, S., Sadoghi Yazdi, H., Lotfizad, M.: A target-based color space for sea target detection. Appl. Intell. 36(4), 960–978 (2012)
Dunn, J.C.: A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. J. Cybern. 3(3), 32–57 (1973)
Hathaway, R., Bezdek, J., Hu, Y.: Generalized fuzzy c-means clustering strategies using LP norm distances. IEEE Trans. Fuzzy Syst. 8(5), 576–582 (2000)
Ahmed, M.N., Yamany, S.M., Mohamed, N.A., Farag, A.A.: A modified fuzzy c-means algorithm for MRI bias field estimation and adaptive segmentation. In: Taylor, C., Colchester, A. (eds.) MICCAI 1999. LNCS, vol. 1679, pp. 72–81. Springer, Heidelberg (1999)
Chen, S., Zhang, D.: Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 34(4), 1907–1916 (2004)
Szilagyi, L., Benyo, Z., Szilagyi, S., Adam, H.: Mr brain image segmentation using an enhanced fuzzy C-means algorithm. In: 2003 Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 1, pp. 724–726. September 2003
Krinidis, S., Chatzis, V.: A robust fuzzy local information C-means clustering algorithm. IEEE Trans. Image Process. 19(5), 1328–1337 (2010)
Wang, X., Lin, X., Yuan, Z.: An edge sensing fuzzy local information C-means clustering algorithm for image segmentation. In: Huang, D.-S., Jo, K.-H., Wang, L. (eds.) ICIC 2014. LNCS, vol. 8589, pp. 230–240. Springer, Heidelberg (2014)
Feng, J., Jiao, L., Zhang, X., Gong, M., Sun, T.: Robust non-local fuzzy C-means algorithm with edge preservation for SAR image segmentation. Signal Process. 93(2), 487–499 (2013)
Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: 1995 Proceedings of the Sixth International Symposium on Micro Machine and Human Science, MHS 1995, pp. 39–43 (1995)
Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the IEEE International Conference on Neural Network, vol. 4, pp. 1942–1948 (1995)
Engelbrecht, A.P.: Computational Intelligence: An Introduction, 2nd edn. Wiley Publishing, Hoboken (2007)
Benaichouche, A., Oulhadj, H., Siarry, P.: Improved spatial fuzzy C-means clustering for image segmentation using PSO initialization, mahalanobis distance and post-segmentation correction. Digital Signal Process. 23(5), 1390–1400 (2013)
Tran, D.C., Wu, Z., Tran, V.H.: Fast generalized fuzzy C-means using particle swarm optimization for image segmentation. In: Loo, C.K., Yap, K.S., Wong, K.W., Teoh, A., Huang, K. (eds.) ICONIP 2014, Part II. LNCS, vol. 8835, pp. 263–270. Springer, Heidelberg (2014)
Zhang, Q., Huang, C., Li, C., Yang, L., Wang, W.: Ultrasound image segmentation based on multi-scale fuzzy C-means and particle swarm optimization. In: IET International Conference on Information Science and Control Engineering 2012, ICISCE 2012, pp. 1–5. December 2012
Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proceedings of the 8th International Conference on Computer Vision, vol. 2, pp. 416–423 (2001)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Mirghasemi, S., Rayudu, R., Zhang, M. (2016). A New Modification of Fuzzy C-Means via Particle Swarm Optimization for Noisy Image Segmentation. In: Ray, T., Sarker, R., Li, X. (eds) Artificial Life and Computational Intelligence. ACALCI 2016. Lecture Notes in Computer Science(), vol 9592. Springer, Cham. https://doi.org/10.1007/978-3-319-28270-1_13
Download citation
DOI: https://doi.org/10.1007/978-3-319-28270-1_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-28269-5
Online ISBN: 978-3-319-28270-1
eBook Packages: Computer ScienceComputer Science (R0)