Skip to main content

Analysis of Co-authorship Ego Networks

  • Conference paper
  • First Online:
Advances in Network Science (NetSci-X 2016)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9564))

Included in the following conference series:

  • 1289 Accesses

Abstract

The availability of co-authorship data from large-scale electronic databases is paving the way for new analyses on human collaboration networks. The complex network of co-authorships can identify specific features that characterise the behaviour of researchers, and impact on their production and performance. In this paper, we analyse a large sample of data regarding scientific publications from Google Scholar. The aim of our analysis is to study a fundamental aspect of co-authorship networks, i.e. the structure of authors’ ego networks. Specifically, we highlight the existence of a hierarchical organisation of these networks in a series of concentric circles, quite similar to that found in general human social networks. In addition, we highlight some properties of the correlation between the ego network structure and the authors scientific productivity, measured in terms of h-index.

This work was partially funded by the EC under the H2020-INFRAIA SoBigData (654024) project.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abbasi, A., Altmann, J., Hossain, L.: Identifying the effects of co-authorship networks on the performance of scholars: a correlation and regression analysis of performance measures and social network analysis measures. J. Inf. 5(4), 594–607 (2011). http://dx.doi.org/10.1016/j.joi.2011.05.007

    Article  Google Scholar 

  2. Abbasi, A., Chung, K.S.K., Hossain, L.: Egocentric analysis of co-authorship network structure, position and performance. Inf. Process. Manag. 48(4), 671–679 (2012). http://dx.doi.org/10.1016/j.ipm.2011.09.001

    Article  Google Scholar 

  3. Arnaboldi, V., Guazzini, A., Passarella, A.: Egocentric online social networks: analysis of key features and prediction of tie strength in Facebook. Comput. Commun. 36(10–11), 1130–1144 (2013)

    Article  Google Scholar 

  4. Doormann, C.F., Strauss, R.: A method for detecting modules in quantitative bipartite networks. Methods Ecol. Evol. 5(1), 90–98 (2013)

    Article  Google Scholar 

  5. Dunbar, R.I.M.: Neocortex size and group size in primates: a test of the hypothesis. J. Hum. Evol. 28(3), 287–296 (1995). http://www.sciencedirect.com/science/article/pii/S0047248485710214

    Article  MathSciNet  Google Scholar 

  6. Dunbar, R.I.M., Arnaboldi, V., Conti, M., Passarella, A.: The structure of online social networks mirrors those in the offline world. Soc. Netw. 43, 39–47 (2015)

    Article  Google Scholar 

  7. Gonçalves, B., Perra, N., Vespignani, A.: Modeling users’ activity on Twitter networks: validation of Dunbar’s Number. PloS One 6(8), e22656 (2011)

    Article  Google Scholar 

  8. Guimerà, R., Uzzi, B., Spiro, J., Amaral, L.A.N.: Team assembly mechanisms determine collaboration network structure and team performance. Science 308(5722), 697–702 (2005)

    Article  Google Scholar 

  9. Guzzo, R.A., Shea, G.P.: Group performance and and intergroup relations in organizations. In: Dunnette, M.D., Hough, L.M. (eds.) Handbook of Industrial and Organizational Psychology, 2nd edn. Consulting Psychologists Press, Palo Alto (1992)

    Google Scholar 

  10. Katz, J.S., Hicks, D.: How much is a collaboration worth? A calibrated bibliometric model. Scientometrics 40(3), 541–554 (1997)

    Article  Google Scholar 

  11. Li, E.Y., Liao, C.H., Yen, H.R.: Co-authorship networks and research impact: a social capital perspective. Res. Policy 42(9), 1515–1530 (2013). http://dx.doi.org/10.1016/j.respol.2013.06.012

    Article  Google Scholar 

  12. Newman, M.E.J.: The structure of scientific collaboration networks. Proc. Nat. Acad. Sci. USA 98(2), 404–409 (2001). http://www.ncbi.nlm.nih.gov/pubmed/11149952

    Article  MATH  MathSciNet  Google Scholar 

  13. Newman, M.E.: Coauthorship networks and patterns of scientific collaboration. PNAS 101(Suppl), 5200–5205 (2004)

    Article  Google Scholar 

  14. Ortega, J.L.: Influence of co-authorship networks in the research impact: ego network analyses from Microsoft academic search. J. Inf. 8(3), 728–737 (2014). http://dx.doi.org/10.1016/j.joi.2014.07.001

    Article  Google Scholar 

  15. Sutcliffe, A., Dunbar, R.I.M., Binder, J., Arrow, H.: Relationships and the social brain: integrating psychological and evolutionary perspectives. Br. J. Psychol. 103(2), 149–68 (2012)

    Article  Google Scholar 

  16. Wang, H., Song, M.: Clustering in one dimension by dynamic programming. R J. 3(2), 29–33 (2011)

    Google Scholar 

  17. Wiersema, M.F., Bantel, K.A.: Top management team demography and corporate strategic change. Acad. Manag. 35(1), 91–121 (2010)

    Article  Google Scholar 

  18. Wuchty, S., Jones, B.F., Uzzi, B.: The increasing dominance of teams in production of knowledge. Science 316(5827), 1036–1039 (2007)

    Article  Google Scholar 

  19. Zhou, W.X., Sornette, D., Hill, R.A., Dunbar, R.I.M.: Discrete hierarchical organization of social group sizes. Biol. Sci. 272(1561), 439–444 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valerio Arnaboldi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Arnaboldi, V., Dunbar, R.I.M., Passarella, A., Conti, M. (2016). Analysis of Co-authorship Ego Networks. In: Wierzbicki, A., Brandes, U., Schweitzer, F., Pedreschi, D. (eds) Advances in Network Science. NetSci-X 2016. Lecture Notes in Computer Science(), vol 9564. Springer, Cham. https://doi.org/10.1007/978-3-319-28361-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28361-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28360-9

  • Online ISBN: 978-3-319-28361-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics