Abstract
Cloud Computing promises to be more flexible, usable, available and simple than Grid, covering also much more computational needs than the ones required to carry out distributed calculations. However, the diversity of cloud providers, the lack of standardised APIs and brokering tools prevent the massive portability of legacy applications to cloud environments. In this work a new framework to effectively schedule distributed calculations in cloud federations is presented. The system takes account of the experience in large and collaborative grid federations to provide several basic features that differentiates it from other approaches, such as the decentralisation, middleware independence, dynamic brokering, on-demand provisioning of specific virtual images, compatibility with legacy applications, efficient accomplishment of short tasks, etc. In this sense, the mechanisms that allow users to consolidate their own resource provisioning in cloud federations are the focus of this work. To demonstrate the suitability of the new approach, a common application to model radiation beams has been scheduled into the EGI FedCloud.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Anastasi, G.F., Carlini, E., Coppola, M., Dazzi, P.: BROKAGE: a genetic approach for QoS cloud brokering. In: 7th IEEE International Conference on Cloud Computing (IEEE CLOUD 2014), 27 June–2 July, Alaska, USA, pp. 304–311 (2014). doi:10.1109/CLOUD.2014.49
Edmonds, A., Metsch, T., Papaspyrou, A., Richardson, A.: Toward an open cloud standard. IEEE Internet Comput. 16(4), 15–25 (2012)
Foster, I., Kesselman, C., Nick, J., Tuecke, S.: Grid services for distributed system integration. Computer 35(6), 37–46 (2002)
Garey, M., Johnson, D.: Computers and Intractibility: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York (1979)
Graciani, R., Casajús, A., Carmona, A., Fifield, T., Sevior, M.: Belle-DIRAC setup for using amazon elastic compute cloud. J. Grid Comput. 9(1), 65–79 (2011)
Grozev, N., Buyya, R.: Inter-cloud architectures and application brokering: taxonomy and survey. Softw. Pract. Experience 44, 369–390 (2014)
Huedo, E., Montero, R.S., Llorente, I.M.: A modular meta-scheduling architecture for interfacing with pre-WS and WS grid resource management services. Future Gener. Comput. Syst. 23(2), 252–261 (2007)
Jain, R.: The Art of Computer Systems Performance Analysis: Techniques for Experimental Design, Measurement, Simulation, and Modeling. Wiley-Interscience, New York (1991)
Juve, G., Deelman, E.: Automating application deployment in infrastructure clouds. In: Third International Conference on Cloud Computing Technology and Science (CloudCom), 9 November–1 December, pp. 658–665 (2011). doi:10.1109/CloudCom.2011.102
Kertesz, A.: Characterizing Cloud Federation Approaches, chap. 12. Computer Communications and Networks, pp. 277–296. Springer (2014). doi:10.1007/978-3-319-10530-7_12
Kovács, J., Marosi, A.C., Visegrádi, A., Farkas, Z., Kacsuk, P., Lovas, R.: Boosting gLite with cloud augmented volunteer computing. Future Gener. Comput. Sys. 43–44, 12–23 (2015)
Lorca, A., Martín-Caro, J., Núez-Ramirez, R., Martínez-Salazar, J.: Merging on-demand HPC resources from amazon EC2 with the grid: a case study of a Xmipp application. Comput. Inf. 31(1), 17–30 (2012)
Lordan, F., Tejedor, E., Ejarque, J., Rafanell, R., Álvarez, J., Marozzo, F., Lezzi, D., Sirvent, R., Talia, D., Badia, R.M.: ServiceSs: an interoperable programming framework for the cloud. J. Grid Comput. 12(1), 67–91 (2014)
Luckow, A., Santcroos, M., Zebrowski, A., Jha, S.: Pilot-data: an abstraction for distributed data. J. Parallel Distrib. Comput. (2014). doi:10.1016/j.jpdc.2014.09.009
Méndez, V., Casajús, A., Fernández, V., Graciani, R., Merino, G.: Rafhyc: an architecture for constructing resilient services on federated hybrid clouds. J. Grid Comput. 11, 753–770 (2013)
Mhashilkar, P., Tiradani, A., Holzman, B., Larson, K., Sfiligoi, I., Rynge, M.: Cloud bursting with glideinwms: means to satisfy ever increasing computing needs for scientific workflows. In: 20th International Conference on Computing in High Energy and Nuclear Physics (CHEP 2013), Journal of Physics: Conference Series, vol. 513, p. 032069. IOP Publishing (2014). doi:10.1088/1742-6596/513/3/032069
Michon, E., Gossa, J., Genaud, S., Frincu, M., Burel, A.: Porting grid applications to the cloud with schlouder. In: IEEE 5th International Conference on Cloud Computing Technology and Science (CloudCom), 2–5 December, pp. 505–512, Bristol, UK (2013). doi:10.1109/CloudCom..73
Montero, R.S., Moreno-Vozmediano, R.: I.M. Llorente: an elasticity model for high throughput computing clusters. J. Parallel Distrib. Comput. 71(6), 750–757 (2011)
Moreno-Vozmediano, R., Montero, R.S., Llorente, I.M.: Multi-cloud deployment of computing clusters for loosely-coupled mtc applications. IEEE Trans. Parallel Distrib. Syst. 22(6), 924–930 (2011)
Parák, B., Šustr, Z., Feldhaus, F., Kasprzakc, P., Srbac, M.: The rOCCI project: providing cloud interoperability with OCCI 1.1. In: International Symposium on Grids and Clouds (ISGC), 23–28 March, Taipei, Taiwan, pp. 1–15. SISA PoS (2014)
Riedel, M., Laure, E., Soddemann, T., Field, L., et al.: Interoperation of world-wide production e-Science infrastructures. Concurrency Comput. Pract. Experience 21(8), 961–990 (2009)
Rodríguez, M., Tapiador, D., Fontan, J., Huedo, E., Montero, R., Llorente, I.: Dynamic provisioning of virtual clusters for grid computing. In: César, E., Alexander, M., Streit, A., Larsson, J., Cérin, C., Knüpfer, A., Kranzlmüller, D., Jha, S. (eds.) Euro-Par 2008 Workshops. LNCS, vol. 5415, pp. 23–32. Springer, Heidelberg (2009)
Rogers, D.W.O., Faddegon, B.A., Ding, G.X., Ma, C.M., Wei, J., Mackie, T.R.: BEAM: a monte carlo code to simulate radiotherapy treatment units. Med. Phys. 22, 503–524 (1995)
Rubio-Montero, A.J., Castejón, F., Huedo, E., Mayo-García, R.: A novel pilot job approach for improving the execution of distributed codes: application to the study of ordering in collisional transport in fusion plasmas. Concurrency Comput. Pract. Experience 27(13), 3220–3244 (2015)
Rubio-Montero, A.J., Huedo, E., Castejón, F., Mayo-García, R.: GWpilot: enabling multi-level scheduling in distributed infrastructures with GridWay and pilot jobs. Future Gener. Comput. Syst. 45, 25–52 (2015)
Rubio-Montero, A.J., Montero, R.S., Huedo, E., Llorente, I.M.: Management of virtual machines on globus grids using gridway. In: 21st IEEE International Parallel and Distributed Processing Symposium (IPDPS), pp. 1–7 (2007). doi:10.1109/IPDPS.2007.370548
Rubio-Montero, A.J., Rodríguez-Pascual, M.A., Mayo-García, R.: Evaluation of an adaptive framework for resilient monte carlo executions. In: 30th ACM/SIGAPP Symposium On Applied Computing (SAC 2015), 13–17 April, Salamanca, Spain, pp. 448–455 (2015). doi:10.1145/2695664.2695890
Sehgal, S., Erdelyi, M., Merzky, A., Jha, S.: Understanding application-level interoperability: scaling-out MapReduce over high-performance grids and clouds. Future Gener. Comput. Syst. 27(5), 590–599 (2011)
Sheikhalishahi, M., Wallace, R., Grandinetti, L., Vázquez-Poletti, J.L., Guerriero, F.: A multi-dimensional job scheduling. Future Generation Computer Systems (2015). doi:10.1016/j.future.2015.03.014
Simón, A., Freire, E., Rosende, R., Díaz, I., Feijóo, A., Rey, P., López-Cacheiro, J., Fernández, C.: EGI FedCloud task force. In: 6th Grid Iberian Infrastructure Conference (IBERGRID 2012), 7–9 November, Lisbon, Portugal, pp. 183–194 (2012)
Torberntsson, K., Rydin, Y.: A Study of Configuration Management Systems. Solutions for Deployment and Configuration of Software in a Cloud Environment (June 2014), B.S. Thesis. Uppsala University, Sweden
Tordsson, J., Montero, R.S., Moreno-Vozmediano, R., Llorente, I.M.: Cloud brokering mechanisms for optimized placement of virtual machines across multiple providers. Future Gener. Comput. Syst. 28(2), 358–367 (2012)
Tröger, P., Merzky, A.: Towards standardized job submission and control in infrastructure clouds. J. Grid Comput. 12, 111–125 (2014)
Vázquez, C., Huedo, E., Montero, R.S., Llorente, I.M.: On the use of clouds for grid resource provisioning. Future Gener. Comput. Syst. 27(5), 600–605 (2011)
Walker, E., Gardner, J., Litvin, V., Turner, E.: Personal adaptive clusters as containers for scientific jobs. Cluster Comput. 10(3), 339–350 (2007)
Wang, L., Tao, J., Kunze, M., Castellanos, A.C., Kramer, D., Karl, W.: Scientific cloud computing: early definition and experience. In: 10th IEEE International Conference on High Performance Computing and Communications (HPCC 2008), 25–27 September, Dalian, China, pp. 825–830 (2008). doi:10.1109/HPCC.2008.38
Yangui, S., Marshall, I.J., Laisne, J.P., Tata, S.: CompatibleOne: the open source cloud broker. J. Grid Comput. 12(1), 93–109 (2014)
Acknowledgements
This work was supported by the COST Action BETTY (IC 1201) and partially funded by the Spanish Ministry of Economy and Competitiveness project CODEC (TIN2013-46009-P).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Rubio-Montero, A.J., Huedo, E., Mayo-García, R. (2015). User-Guided Provisioning in Federated Clouds for Distributed Calculations. In: Pop, F., Potop-Butucaru, M. (eds) Adaptive Resource Management and Scheduling for Cloud Computing. ARMS-CC 2015. Lecture Notes in Computer Science(), vol 9438. Springer, Cham. https://doi.org/10.1007/978-3-319-28448-4_5
Download citation
DOI: https://doi.org/10.1007/978-3-319-28448-4_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-28447-7
Online ISBN: 978-3-319-28448-4
eBook Packages: Computer ScienceComputer Science (R0)