Skip to main content

Connectivity of a Dense Mesh of Randomly Oriented Directional Antennas Under a Realistic Fading Model

  • Conference paper
  • First Online:
Algorithms for Sensor Systems (ALGOSENSORS 2015)

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 9536))

Abstract

We study mesh networks formed by nodes equipped with directional antennas in a high node-density setting. To do so we create a random geometric graph with n nodes placed uniformly at random. The antenna at each node chooses a direction of orientation at random and edges are placed between pairs of nodes based on their distance from each other and their directions of orientation according to the gain function of the antennas. To model the directionality of the antennas we consider a realistic gain function where the signal fades away from the direction of orientation. We also consider an idealised function that concentrates the gain uniformly in a sector of angle \(2\theta \) centred around the direction of orientation. In this setting we show theoretically that with probability tending to 1 the optimal power required for achieving connectivity is significantly lower than that needed for connectivity in an omnidirectional setting. We capture mathematically the relationship between this optimal power level and the maximum gain of the antenna, showing that as the directionality of the antenna increases the power needed for connectivity decreases. However this optimal power level is also inversely proportional to the probability of connectivity of two randomly placed nodes, which decreases as directionality increases. We validate these results through simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bagchi, A., Pinotti, C.M., Galhotra, S., Mangla, T.: Optimal radius for connectivity in duty-cycled wireless sensor networks. ACM Trans. Sens. Netw. 11(2), Article no. 36, 1–37 (2015)

    Google Scholar 

  2. Balanis, C.A.: Antenna Theory: Analysis and Design. Wiley, New York (2012)

    Google Scholar 

  3. Balister, P., Bollobas, B., Sarkar, A., Kumar, S.: Reliable density estimates for coverage and connectivity in thin strips of finite length. In: Proceedings of 13th Annual ACM International Conference on Mobile Computing and Networking (Mobicom 2007), pp. 75–86. ACM (2007)

    Google Scholar 

  4. Bettstetter, C., Hartmann, C., Moser, C.: How does randomized beamforming improve the connectivity of ad hoc networks? In: IEEE International Conference on Communications (ICC 2005), vol. 5, pp. 3380–3385. IEEE (2005)

    Google Scholar 

  5. Caragiannis, I., Kaklamanis, C., Kranakis, E., Krizanc, D., Wiese, A.: Communication in wireless networks with directional antennas. In: Proceedings of 20th Annual Symposium Parallelism in Algorithms and Architectures (SPAA 2008), pp. 344–351. ACM (2008)

    Google Scholar 

  6. Carmi, P., Katz, M.J., Lotker, Z., Rosén, A.: Connectivity guarantees for wireless networks with directional antennas. Comput. Geom. 44(9), 477–485 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  7. Chawla, A., Yadav, V., Dev Sharma, V., Bajaj, J., Nanda, E., Ribeiro, V., Saran, H.: RODEO: robust and rapidly deployable TDM mesh with QoS differentiation. In: Proceedings of 4th International Conference Communication Systems and Networks (COMSNETS 2012), pp. 1–6. IEEE (2012)

    Google Scholar 

  8. Chebrolu, K., Raman, B.: FRACTEL: a fresh perspective on (rural) mesh networks. In: Proceedings of 2007 Workshop on Networked Systems for Developing Regions, p. 8. ACM (2007)

    Google Scholar 

  9. Dousse, O., Baccelli, F., Thiran, P.: Impact of interferences on connectivity in ad hoc networks. IEEE/ACM Trans. Netw. 13(2), 425–436 (2005)

    Article  Google Scholar 

  10. Gupta, P., Kumar, P.R.: Critical power for asymptotic connectivity. In: Proceedings of 37th IEEE Conference on Decision and Control, pp. 1106–1110. IEEE (1998)

    Google Scholar 

  11. Gupta, P., Kumar, P.R.: Critical power for asymptotic connectivity in wireless networks. In: McEneaney, W.M., George Yin, G., Zhang, Q. (eds.) Stochastic Analysis, Control, Optimization and Applications. A Volume in Honor of W.H. Fleming, pp. 547–566. Springer, New York (1999)

    Chapter  Google Scholar 

  12. Kranakis, E., Krizanc, D., Williams, E.: Directional versus omnidirectional antennas for energy consumption and k-connectivity of networks of sensors. In: Higashino, T. (ed.) OPODIS 2004. LNCS, vol. 3544, pp. 357–368. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  13. Li, P., Zhang, C., Fang, Y.: Asymptotic connectivity in wireless ad hoc networks using directional antennas. IEEE/ACM Trans. Netw. 17(4), 1106–1117 (2009)

    Article  Google Scholar 

  14. Madsen, T.K., Fitzek, F.H., Prasad, R., Schulte, G.: Connectivity probability of wireless ad hoc networks: definition, evaluation, comparison. Wirel. Pers. Commun. 35(1–2), 135–151 (2005)

    Article  Google Scholar 

  15. Meester, R., Roy, R.: Continuum Percolation. Number 119 in Cambridge Tracts in Mathematics. Cambridge University dss, Cambridge (1996)

    Google Scholar 

  16. Penrose, M.D.: On a continuum percolation model. Adv. Appl. Probab. 23(3), 546–556 (1991)

    Article  MathSciNet  Google Scholar 

  17. Silver, S.: Microwave Antenna Theory and Design. McGraw-Hill, New York (1949)

    Google Scholar 

  18. Souryal, M.R., Wapf, A., Moayeri, N.: Rapidly-deployable mesh network testbed. In: Proceedings of Global Telecommunications Conference (GLOBECOM 2009), pp. 1–6. IEEE (2009)

    Google Scholar 

  19. Wan, P.-J., Yi, C.-W.: Asymptotic critical transmission ranges for connectivity in wireless ad hoc networks with bernoulli nodes. In: Proceedings of IEEE Wireless Communications and Networking Conference (WCNC 2005), vol. 4, pp. 2219–2224. IEEE (2005)

    Google Scholar 

  20. Xu, H., Dai, H.-N., Zhao, Q.: On the connectivity of wireless networks with multiple directional antennas. In: 18th IEEE International Conference on Networks (ICON 2012), pp. 155–160. IEEE (2012)

    Google Scholar 

  21. Yi, C.-W., Wan, P.-J., Li, M., Frieder, O.: Asymptotic distribution of the number of isolated nodes in wireless ad hoc networks with bernoulli nodes. IEEE Trans. Commun. 54(3), 510–517 (2006)

    Article  Google Scholar 

  22. Yu, Z., Teng, J., Bai, X., Xuan, D., Jia, W.: Connected coverage in wireless networks with directional antennas. ACM Trans. Sens. Netw. 10(3), 51 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amitabha Bagchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Bagchi, A., Betti Sorbelli, F., Pinotti, C.M., Ribeiro, V. (2015). Connectivity of a Dense Mesh of Randomly Oriented Directional Antennas Under a Realistic Fading Model. In: Bose, P., Gąsieniec, L., Römer, K., Wattenhofer, R. (eds) Algorithms for Sensor Systems. ALGOSENSORS 2015. Lecture Notes in Computer Science(), vol 9536. Springer, Cham. https://doi.org/10.1007/978-3-319-28472-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28472-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28471-2

  • Online ISBN: 978-3-319-28472-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics