Skip to main content

An Overview of Spectral Imaging of Human Skin Toward Face Recognition

  • Chapter
  • First Online:
Face Recognition Across the Imaging Spectrum

Abstract

Spectral imaging is a form of remote sensing that provides a means of collecting information from surroundings without physical contact. Differences in spectral reflectance over the electromagnetic spectrum allow for the detection, classification , or quantification of objects in a scene. The development of this field has largely benefited from Earth observing airborne and spaceborne programs. Information gained from spectral imaging has been recognized as making key contributions from the regional to the global scale. The burgeoning market of compact hyperspectral sensors has opened new opportunities, at smaller spatial scales, in a large number of applications such as medical, environmental, security, and industrial processes. The market is expected to continue to evolve and result in advancements in sensor size, performance, and cost. In order to employ spectral imaging for a specific task, it is critical to have a fundamental understanding of the phenomenology of the subject of interest, the imaging sensor, image processing, and interpretation of the results. Spectral imaging of human tissue has the strong foundation of a well-known combination of components, e.g., hemoglobin, melanin, and water that make skin distinct from most backgrounds. These components are heterogeneously distributed and vary across the skin of individuals and between individuals. The spatial component of spectral imaging provides a basis for making spectral distinctions of these differences. This chapter provides an introduction to the interaction of energy in the electromagnetic spectrum with human tissue and other materials, the fundamentals of sensors and data collection, common analysis techniques, and the interpretation of results for decision making. The basic information provided in this chapter can be utilized for a wide range of applications where spectral imaging may be adopted including face recognition .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Celebrating 40 years of Landsat. http://eijournal.com/print/articles/celebrating-40-years-years-of-landsat. Accessed 22 Sept 2015

  2. Phillips, P.J.: In: Proceedings of IEEE Conference on Progress in Human ID, Advanced Video and Signal Based Surveillance (2003)

    Google Scholar 

  3. Grother, P.J., Quinn, G.W., Phillips, P.J.: Report on the Evaluation of 2D Still-Image Face Recognition Algorithms NIST Interagency/Internal Report (NISTIR)—7709, June 2010. http://www.nist.gov/customcf/get_pdf.cfm?pub_id=905968

  4. Grother, P.J., Ngan, M.L.: Performance of Face Identification Algorithms NIST Interagency/Internal Report (NISTIR)—8009, May 2014. http://www.nist.gov/customcf/get_pdf.cfm?pub_id=915761

  5. Chang, H.: Multispectral imaging for face recognition over varying illumination. Ph.D. dissertation, Department of Electrical Engineering and Computer Science, University of Tennessee, TN (2008) (IRIS-M database)

    Google Scholar 

  6. Di, W., Zhang, L., Zhang, D., Pan, Q.: Studies on hyperspectral face recognition in visible spectrum with feature band selection. In: IEEE Transactions on Systems, Man, Cybernetics A, Systems Humans, vol. 40, pp. 1354–1361 (2010) (PolyU database)

    Google Scholar 

  7. Denes, L., Metes, P., Liu, Y.: Hyperspectral face database. Technical Report CMU-RI-TR-02-25, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA (2002) (CMU database)

    Google Scholar 

  8. Skauli, T., Farrell, J.: A collection of hyperspectral images for imaging systems research. In: Proceedings of SPIE 8660, Digital Photography IX (2013) (Stanford database)

    Google Scholar 

  9. Cho, W., Koschan, A., Abidi, M.A.: Multispectral/Hyperspectral Face Databases. In: Face Recognition Across the Electromagnetic Spectrum. Springer, Berlin (2016)

    Google Scholar 

  10. Pan, Z., Healey, G.E., Prasad, M., Tromberg, B.: Face recognition in hyperspectral images. In: IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 25, issue 12, pp. 1552–1560 (2003)

    Google Scholar 

  11. Di, W., Zhang, L., Zhang, D., Pan, Q.: Studies on hyperspectral face recognition in visible spectrum with feature band selection. In: IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, vol. 40, issue 6, pp. 1354–1361 (2010)

    Google Scholar 

  12. Uzair, M., Mahmood, A., Mian, A.: Hyperspectral face recognition with spatiospectral information fusion and PLS regression. In: IEEE Transactions on Image Processing, vol. 24, issue 3, pp. 1127–1137 (2015)

    Google Scholar 

  13. Uzair, M., Mahmood, A., Shafait, F., Nansen, C., Mian, A.: Is Spectral Reflectance of the Face a Reliable Biometric? Optics Express, vol. 23, issue 12, pp. 15160–15173, Jun 15 2015. doi:10.1364/OE.23.015160

    Google Scholar 

  14. Rosario, D.: Spectral LWIR imaging for remote face detection. In: IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp. 4419–4422 (2011)

    Google Scholar 

  15. Bourlai, T., Ross, A., Chen, C., Hornak, L.: A study on using mid-wave infrared images for face recognition. In: Proceedings of SPIE 8371, Sensing Technologies for Global Health, Military Medicine, Disaster Response, and Environmental Monitoring II; and Biometric Technology for Human Identification IX, 83711 K, 1 May 2012. doi:10.1117/12.918899

  16. Choi, J., Hu, S., Young, S.S., Davis, L.S.: Thermal to visible face recognition. In: Proceedings of SPIE 8371, Sensing Technologies for Global Health, Military Medicine, Disaster Response, and Environmental Monitoring II; and Biometric Technology for Human Identification IX, 83711L, 1 May 2012. doi:10.1117/12.920330

  17. Osia, N., Bourlai, T.: A spectral independent approach for physiological and geometric based face recognition in the visible, middle-wave and long-wave infrared bands. Image Vision Comput. J. Elsevier 32(11), 847–859 (2014)

    Article  Google Scholar 

  18. Narang, N., Bourlai, T.: Face recognition in the SWIR band when using single sensor multi-wavelength imaging systems. Image Vision Comput. J. Elsevier 33, 26–43 (2015)

    Article  Google Scholar 

  19. Cannon, T.W.: Light and radiation. In: Handbook of Applied Photometry American Institute of Physics (Chapter 1), p. 5, Woodbury, NY (1997)

    Google Scholar 

  20. Nicodemus, F., et al: Geometric considerations and nomenclature for reflectance, US Department of Commerce, NBS monograph 160 (1977)

    Google Scholar 

  21. Koch, B.M.: A Multispectral bidirectional reflectance distribution function study of human skin for improved dismount detection. Thesis, Air Force Institute of Technology (2011)

    Google Scholar 

  22. Shaw, G.A., Burke, H.K.: Spectral imaging for remote sensing. Lincoln Lab. J. 14(1), 3–28 (2003)

    Google Scholar 

  23. Hagen, N., Kudenov, M.W.: Review of snapshot spectral imaging technologies. Opt. Eng. 0001 52(9), 090901–090901 (2013)

    Google Scholar 

  24. CODATA Value: Wien wavelength displacement law constant. The NIST Reference on Constants, Units, and Uncertainty. US National Institute of Standards and Technology, June 2011. http://physics.nist.gov/cuu/Constants/

  25. Lu, G., Fei, B., Medical hyperspectral imaging: a review. J. Biomed. Opt. 0001 19(1), 010901 (2014)

    Google Scholar 

  26. Cooksey, C.C., Neira, J.E., Allen, D.W.: The evaluation of hyperspectral imaging for the detection of person-borne threat objects over the 400 nm to 1700 nm spectral region. In: Proceedings of SPIE 8357, Detection and Sensing of Mines, Explosive Objects, and Obscured Targets XVII, 83570O, 1 May 2012. doi:10.1117/12.919432

  27. Cooksey, C.C., Tsai, B.K., Allen, D.W.: Spectral reflectance variability of skin and attributing factors. In: Proceedings of SPIE 9461, Radar Sensor Technology XIX; and Active and Passive Signatures VI, 94611 M, 21 May 2015. doi:10.1117/12.2184485

  28. Jacques, S.L.: Optical properties of biological tissues: a review. Phys. Med. Biol. 58, R37 (2013)

    Google Scholar 

  29. Gnyawali, S.C., Elgharably, H., Melvin, J., Huang, K., Bergdall, V., Allen, D.W., Hwang, J., Litorja, M., Shirley, E., Sen, C.K., Xu, R.: Hyperspectral imaging of ischemic wounds. In: Proceedings of SPIE 8229, Optical Diagnostics and Sensing XII: Toward Point-of-Care Diagnostics; and Design and Performance Validation of Phantoms Used in Conjunction with Optical Measurement of Tissue IV, 822910, 1 Feb 2012. doi:10.1117/12.907107

  30. Xu, R.X., Allen, D.W., Huang, J., Gnyawali, S., Melvin, J., Elgharably, H., Sen, C.K.: Developing digital tissue phantoms for hyperspectral imaging of ischemic wounds. Biomed. Opt. Express 3(6), 1433–1445 (2012). doi:10.1364/BOE.3.001433

    Article  Google Scholar 

  31. Barnes, P.Y., Early, E.A., Parr, A.C.: NIST Measurement Services: Spectral Reflectance. NIST Special Publication, pp. 250–48 (1998)

    Google Scholar 

  32. Beisley, A.P.: Spectral detection of human skin in VIS-SWIR hyperspectral imagery without radiometric calibration. Thesis, Air Force Institute of Technology (2012)

    Google Scholar 

  33. Velez-Reyes, M., Kruse, F.A.: Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XXI Baltimore, Maryland, United States, 20 Apr 2015 (Note: this conference, including the preceding years, has produced over 1,000 papers on the subject of spectral imaging algorithms)

    Google Scholar 

  34. Kruse, F.A., Lefkoff, A.B., Boardman, J.B., Heidebrecht, K.B., Shapiro, A.T., Barloon, P.J., Goetz, A.F.H.: The spectral image processing system (SIPS)—interactive visualization and analysis of imaging spectrometer data. Remote Sens. Environ. 44, 145–163 (1993)

    Article  Google Scholar 

  35. Manolakis, D., Marden, D., Shaw, G.A.: Hyperspectral image processing for automatic target detection applications. Lincoln Lab. J. 14(1), 79–116 (2003)

    Google Scholar 

  36. Richards, J.A., Richards, J.A.: Remote Sensing Digital Image Analysis, vol. 3. Springer, Berlin (1999)

    Book  Google Scholar 

  37. Kaur, B., Hodgkin, V.A., Nelson, J.K., Ikonomidou, V.N., Hutchinson, J.A.: Hyperspectral waveband group optimization for time-resolved human sensing. In: Proceedings of SPIE 8750, Independent Component Analyses, Compressive Sampling, Wavelets, Neural Net, Biosystems, and Nanoengineering XI, 87500 J, 29 May 2013. doi:10.1117/12.2018334

  38. Eismann, M.T.: Hyperspectral Remote Sensing SPIE Press, Apr 2012. ISBN 9780819487872

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David W. Allen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland (outside the USA)

About this chapter

Cite this chapter

Allen, D.W. (2016). An Overview of Spectral Imaging of Human Skin Toward Face Recognition. In: Bourlai, T. (eds) Face Recognition Across the Imaging Spectrum. Springer, Cham. https://doi.org/10.1007/978-3-319-28501-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28501-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28499-6

  • Online ISBN: 978-3-319-28501-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics