Skip to main content

Complex Variants of GLVQ Based on Wirtinger’s Calculus

  • Conference paper
  • First Online:
Advances in Self-Organizing Maps and Learning Vector Quantization

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 428))

Abstract

This paper addresses the application of gradient descent based machine learning methods to complex-valued data. In particular, the focus is on classification using Learning Vector Quantization and extensions thereof. In order to apply gradient-based methods to complex-valued data we use the mathematical formalism of Wirtinger’s calculus to describe the derivatives of the involved dissimilarity measures, which are functions of complex-valued variables. We present a number of examples for those dissimilarity measures, including several complex-valued kernels, together with the derivatives required for the learning procedure. The resulting algorithms are tested on a data set for image recognition using Zernike moments as complex-valued shape descriptors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nitta, T.: Solving the XOR problem and the detection of symmetry using a single complex-valued neuron. Neural Netw. 16, 1101–1105 (2003)

    Article  Google Scholar 

  2. Schölkopf, B., Smola, A.: Learning with Kernels. MIT Press, Cambridge (2002)

    Google Scholar 

  3. Hyvärinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. Wiley, New York (2001)

    Book  Google Scholar 

  4. Sato, A., Yamada, K.: Generalized learning vector quantization. In: Hasselmo, M.E., Touretzky, D.S., Mozer, M.C. (eds.) Advances in Neural Information Processing Systems, pp. 423–429. MIT Press, Cambridge (1996)

    Google Scholar 

  5. Witoelar, A., Gosh, A., de Vries, J., Hammer, B., Biehl, M.: Window-based example selection in learning vector quantization. Neural Comput. 22(11), 2924–2961 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  6. Kästner, M., Riedel, M., Stickert, M., Hermann, W., Villmann, T.: Border-sensitive learning in kernelized learning vector quantization. In: InternationalWork Conference on Artificial Neural Networks (IWANN), Tenerife (2013)

    Google Scholar 

  7. Bunte, K., Schleif, F., Biehl, M.: Adaptive learning for complex-valued data. In: 20th European Symposium on Artificial Neural Networks, ESANN 2012, Bruges, Belgium, April 25–27 2012

    Google Scholar 

  8. Wirtinger, W.: Zur formalen Theorie der Funktionen von mehr komplexen Veränderlichen. Mathematische Annalen 97(1), 357–375 (1927)

    Article  MathSciNet  Google Scholar 

  9. Villmann, T., Haase, S., Kaden, M.: Kernelized vector quantization in gradient-descent learning. Neurocomputing, 147(0), 83–95, Advances in Self-Organizing Maps Subtitle of the special issue: Selected Papers from the Workshop on Self-Organizing Maps 2012 (WSOM 2012) (2015)

    Google Scholar 

  10. Robbins, H., Monro, S.: A stochastic Approximation Method. Ann. Math. Stat. 400–407 (1951)

    Google Scholar 

  11. Mwebaze, E., Schneider, P., Schleif, F.-M., Aduwo, J.R., Quinn, J.A., Haase, S., Villmann, T., Biehl, M.: Divergence-based classification in learning vector quantization. Neurocomputing 74(9), 1429–1435 (2011)

    Article  Google Scholar 

  12. Schneider, P., Biehl, M., Hammer, B.: Adaptive relevance matrices in learning vector quantization. Neural Comput. 21(12), 3532–3561 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  13. Schneider, P., Hammer, B., Biehl, M.: Distance learning in discriminative vector quantization. Neural Comput. 21, 2942–2969 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  14. Bunte, K., Schneider, P., Hammer, B., Schleif, F., Villmann, T., Biehl, M.: Limited rank matrix learning, discriminative dimension reduction and visualization. Neural Netw. 26, 159–173 (2012)

    Article  Google Scholar 

  15. Ahlfors, L.V.: Complex Analysis, 2nd edn. McGraw’Hill Publishing Comp. Ltd, Maidenhead (1966)

    MATH  Google Scholar 

  16. Steinwart, I., Hush, D., Scovel, C.: An explicit description of the reproducing kernel hilbert spaces of gaussian RBF kernels. IEEE Trans. Inf. Theory 52, 4635–4643 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  17. Genton, M.G.: Classes of kernels for machine learning: a statistics perspective. J. Mach. Learn. Res. 2, 299–312 (2002)

    MATH  MathSciNet  Google Scholar 

  18. Teague, M.R.: Image analysis via the general theory of moments. J. Opt. Soc. Am. 70, 920–930 (1980)

    Article  MathSciNet  Google Scholar 

  19. Wu, S.G., Bao, F.S., Xu, E.Y., Wang, Y., Chang, Y.-F., Xiang, Q.-L.: A leaf recognition algorithm for plant classification using probabilistic neural network, CoRR (2007). arXiv: 0707.4289

Download references

Acknowledgments

M.B. thanks the Aspen Center for Physics and the NSF Grant No. PHYS-1066293 for hospitality while the writing of this paper was finalized.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Matthias Gay , Marika Kaden or Thomas Villmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Gay, M., Kaden, M., Biehl, M., Lampe, A., Villmann, T. (2016). Complex Variants of GLVQ Based on Wirtinger’s Calculus. In: Merényi, E., Mendenhall, M., O'Driscoll, P. (eds) Advances in Self-Organizing Maps and Learning Vector Quantization. Advances in Intelligent Systems and Computing, vol 428. Springer, Cham. https://doi.org/10.1007/978-3-319-28518-4_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28518-4_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28517-7

  • Online ISBN: 978-3-319-28518-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics