Skip to main content

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 429))

Abstract

The objective of the proposed concept is to develop a methodology to support Unmanned Aerial Vehicles (UAVs) operation with a path planning and scheduling system in 3D environments. The proposed 3D path-planning and scheduling allows the system to schedule UAVs routing to perform tasks in 3D indoor environment. On top of that, the multi-source productive best-first-search concept also supports efficient real-time scheduling in response to uncertain events. Without human intervention, the proposed work provides an automatic scheduling system for UAV routing problem in 3D indoor environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abumaizar, R.J., Svestka, J.A.: Rescheduling job shops under random disruptions. Int. J. Prod. Res. 35(7), 2065–2082 (1997)

    Article  MATH  Google Scholar 

  2. Bareth, G., Aasen, H., Bendig, J., Gnyp, M.L., Bolten, A., Jung, A., Michels, R., Soukkamaki, J.: Low-weight and UAV-based hyperspectral full-frame cameras for monitoring crops: spectral comparison with portable spectroradiometer measurements. Photogrammetrie Fernerkundung Geoinformation 69–79 (2015)

    Google Scholar 

  3. Bocewicz, G., Nielsen, I., Banaszak, Z.: Iterative multimodal processes scheduling. Annu. Rev. Control 38(1), 113–122 (2014). doi:10.1016/j.arcontrol.2014.03.011

    Google Scholar 

  4. Corréa, A.I., Langevin, A., Rousseau, L.: Scheduling and routing of automated guided vehicles: a hybrid approach. Comput. Oper. Res. 34, 1688–1707 (2007)

    Article  MATH  Google Scholar 

  5. Dang, Q.V., Nielsen, I.: Simultaneous scheduling of machines and mobile robots. In: Corchado, J.M. (eds.) PAAMS 2013, CCIS, 365, pp. 118–128. Springer, Berlin (2013)

    Google Scholar 

  6. Dang, Q.V., Nielsen, I., Steger-Jensen, K., Golinska, P. (eds.) Scheduling a single mobile robot incorporated into production environment. In: EcoProduction and Logistics, pp. 185–201. Springer, Berlin (2013)

    Google Scholar 

  7. Davich, T.: Material handling solutions: a look into automated robotics. Wunsch Materials Handling Prize, Technical Communication Program—UW-Madison (2010)

    Google Scholar 

  8. Do, N.A.D., Nielsen, I., Chen, G., Nielsen, P.: A simulation-based genetic algorithm approach for reducing emissions from import container pick-up operation at container terminal. Ann. Oper. Res. 1–17 (2014)

    Google Scholar 

  9. Fazlollahtabar, H., Saidi-Mehrabad, M.: Methodologies to optimize automated guided vehicle scheduling and routing problems: a review study. J. Intell. Robot. Syst. 77(3–4), 525–545 (2015)

    Article  Google Scholar 

  10. Ganesh, K., Narendran, T.T.: TASTE: a two-phase heuristic to solve a routing problem with simultaneous delivery and pick-up. Int. J. Adv. Manuf. Technol. 37(11–12), 1221–1231 (2008)

    Article  Google Scholar 

  11. Golden, B.L., Raghavan, S., Wasil, E.A.: The Vehicle Routing Problem: Latest Advances and New Challenges, vol. 43. Springer, Berlin (2008)

    Google Scholar 

  12. Hampapur, A., Li, J., Pankanti, S., Otto, C.A.: Method for performing visual surveillance of moving objects by using unmanned aerial vehicle for civilian purpose, involves performing motion segmentation of images, and tracking moving objects to facilitate visual surveillance of objects. U.S. Patent No. US2013002866-A1, 3 Jan 2013

    Google Scholar 

  13. Hvilshøj, M., Bøgh, S., Nielsen, O.S., Madsen, O.: Autonomous industrial mobile manipulation (AIMM): past, present and future. Ind. Robot Int. J. 39(2), 120–135 (2012)

    Article  Google Scholar 

  14. Kats, V., Levner, E.: A faster algorithm for 2-cyclic robotic scheduling with a fixed robot route and interval processing times. Eur. J. Oper. Res. 209(1), 51–56 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Möhring, R.H., Köhler, E., Gawrilow, E., Stenzel, B.: Conflict-free real-time AGV routing. In: Operations Research Proceedings, pp. 18–24. Springer, Berlin (2004)

    Google Scholar 

  16. Nielsen, I., Lim, M., Nielsen, P.: Optimizing supply chain waste management through the use of RFID technology. In: IEEE International Conference on RFID-Technology and Applications (RFID-TA), 2010, pp. 296–301 (2010)

    Google Scholar 

  17. Nielsen, I., Bocewicz, G., Do, N.A.D., Brunoe, T.D. et al. (eds.): Production and resource scheduling in mass customization with dependent setup consideration. In: LNPE, pp. 461–472. Springer, Switzerland (2014). doi:10.1007/978-3-319-04271-8_39

    Google Scholar 

  18. Nielsen, I., Dang, Q. V., Nielsen, P., Pawlewski, P. Scheduling of mobile robots with preemptive tasks. advances in intelligent systems and computing, pp. 19–27. Springer, Berlin (2014). doi:10.1007/978-3-319-07593-8_3

    Google Scholar 

  19. Nielsen, I., Dang, Q.V.: Bocewicz, G., Banaszak, Z.: A methodology for implementation of mobile robot in adaptive manufacturing environments. J. Intell. Manuf. doi:10.1007/s10845-015-1072-2

    Google Scholar 

  20. Nishi, T., Ando, M., Konishi, M.: Experimental studies on a local rescheduling procedure for dynamic routing of autonomous decentralized AGV systems. Robot. Comput. Integr. Manuf. 22, 154–165 (2006)

    Article  Google Scholar 

  21. Spliet, R., Gabor, A.F., Dekker, R.: The vehicle rescheduling problem. Comput. Oper. Res. 43, 129–136 (2013)

    Google Scholar 

  22. Vieira, G.E., Herrmann, J.W., Lin, E.: Rescheduling manufacturing systems: a framework of strategies, policies, and methods. J. Sched. 6(1), 39–62 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  23. von Bueren, S.K., Burkart, A. Hueni, A., Rascher, U., Tuohy, M.P., Yule, I.J.: Deploying four optical UAV-based sensors over grassland: challenges and limitations. Biogeosciences 12, 163–175 (2015)

    Google Scholar 

  24. Wang, C., Zhu, Z.Y., Chan, S.C., Shum, H.Y.: Real-time depth image acquisition and restoration for image based rendering and processing systems. J. Signal Process. Syst. Signal Image Video Technol. 79(1), 1–18 (2015)

    Article  Google Scholar 

  25. Yamamoto, M., Nof, S.Y.: Scheduling/rescheduling in the manufacturing operating system environment. Int. J. Prod. Res. 23(4), 705–722 (1985)

    Article  Google Scholar 

  26. Zhang, S., Wang, C., Chan, S.C.: A new high resolution depth map estimation system using stereo vision and kinect depth sensing. J. Signal Process. Syst. Signal Image Video Technol. 79(1), 19–31 (2015)

    Article  Google Scholar 

Download references

Acknowledgment

This work has partly been supported by Innovation Fund Denmark under project UAWorld; grant agreement number 9-2014-3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yohanes Khosiawan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Khosiawan, Y., Nielsen, I., Do, N.A.D., Yahya, B.N. (2016). Concept of Indoor 3D-Route UAV Scheduling System. In: Borzemski, L., Grzech, A., Świątek, J., Wilimowska, Z. (eds) Information Systems Architecture and Technology: Proceedings of 36th International Conference on Information Systems Architecture and Technology – ISAT 2015 – Part I. Advances in Intelligent Systems and Computing, vol 429. Springer, Cham. https://doi.org/10.1007/978-3-319-28555-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28555-9_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28553-5

  • Online ISBN: 978-3-319-28555-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics