Skip to main content

Quantum Correlations: Challenging the Tsirelson Bound

  • Conference paper
  • First Online:
Quantum Interaction (QI 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9535))

Included in the following conference series:

Abstract

A detailed study of quantum correlations reveals that reconstructions based on physical principles often fail to reproduce the quantum bound in the general case of N-partite correlations. We read here an indication that the notion of system, implicitly assumed in the operational approaches, becomes problematic. Our approach addresses this issue using algebraic coding theory. If the observer is defined by a limit on string complexity, information dynamics leads to an emergent continuous model in the critical regime. Restricting it to a family of binary codes describing ‘bipartite systems,’ we find strong evidence of an upper bound on bipartite correlations equal to 2.82537, which is measurably lower than the Tsirelson bound.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adler, S.: Quaternionic Quantum Mechanics and Quantum Fields. Oxford University Press, New York (1995)

    MATH  Google Scholar 

  2. Barrett, J.: Information processing in generalized probabilistic theories. Phys. Rev. A 75, 032304 (2007)

    Article  Google Scholar 

  3. Bell, J.: On the Einstein-Podolsky-Rosen paradox. Physica 1, 195–200 (1964)

    Google Scholar 

  4. Brassard, G., Buhrman, H., Linden, N., Méthot, A.A., Tapp, A., Unger, F.: Limit on nonlocality in any world in which communication complexity is not trivial. Phys. Rev. Lett. 96(25), 250401 (2006)

    Article  MathSciNet  Google Scholar 

  5. Chiribella, G., d’Ariano, G.M., Perinotti, P.: Informational derivation of quantum theory. Phys. Rev. A 84, 012311 (2011)

    Article  Google Scholar 

  6. Cirel’son, B.S.: Quantum generalizations of Bell’s inequality. Lett. Math. Phys. 4(2), 93–100 (1980)

    Article  MathSciNet  Google Scholar 

  7. Clifton, R., Bub, J., Halvorson, H.: Characterizing quantum theory in terms of information-theoretic constraints. Found. Phys. 33(11), 1561–1591 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  8. Dakić, B., Brukner, Č.: Quantum theory and beyond: is entanglement special? In: Halvorson, H. (ed.) Deep Beauty: Understanding the Quantum World through Mathematical Innovation, pp. 365–392. Cambridge University Press, Cambridge (2011)

    Google Scholar 

  9. El-Showk, S., et al.: Solving the 3D ising model with the conformal bootstrap. Phys. Rev. D 86, 025022 (2012)

    Article  Google Scholar 

  10. El-Showk, S., et al.: Solving the 3D ising model with the conformal bootstrap II. c-Minimization and precise critical exponents. J. Stat. Phys. 157, 869–914 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  11. Fritz, T., Sainz, A.B., Augusiak, R., Brask, J.B., Chaves, R., Leverrier, A., Acín, A.: Local orthogonality as a multipartite principle for quantum correlations. Nat. Commun. 4, 2263 (2013)

    Article  Google Scholar 

  12. Gallego, R., Würflinger, L.E., Acín, A., Navascués, M.: Quantum correlations require multipartite information principles. Phys. Rev. Lett. 107, 210403 (2011)

    Article  Google Scholar 

  13. Grinbaum, A.: Reconstruction of quantum theory. Brit. J. Philos. Sci. 58, 387–408 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  14. Grinbaum, A.: Quantum theory as a critical regime of language dynamics. Found. Phys. 45, 1341–1350 (2015). http://dx.doi.org/10.1007/s10701-015-9937-y

    Article  MathSciNet  Google Scholar 

  15. Hardy, L.: Quantum theory from five reasonable axioms (2000). http://arxiv.org/abs/quant-ph/0101012

  16. Landsman, N.: Mathematical Topics Between Classical and Quantum Mechanics. Spinger, New York (1998)

    Book  Google Scholar 

  17. Linden, N., Popescu, S., Short, A.J., Winter, A.: Quantum nonlocality and beyond: limits from nonlocal computation. Phys. Rev. Lett. 99(18), 180502 (2007). http://link.aps.org/doi/10.1103/PhysRevLett.99.180502

    Article  MathSciNet  Google Scholar 

  18. Mackey, G.: Quantum mechanics and Hilbert space. Am. Math. Mon. 64, 45–57 (1957)

    Article  MATH  MathSciNet  Google Scholar 

  19. Manin, Y.: Complexity vs. energy: theory of computation and theoretical physics. J. Phys. Conf. Ser. 532, 012018 (2014)

    Article  Google Scholar 

  20. Manin, Y., Marcolli, M.: Errorcorrecting codes and phase transitions. Math. Comput. Sci. 5, 155–179 (2011)

    Article  MathSciNet  Google Scholar 

  21. Manin, Y., Marcolli, M.: Kolmogorov complexity and the asymptotic bound for errorcorrecting codes. J. Differ. Geom. 97(1), 91–108 (2014)

    MATH  MathSciNet  Google Scholar 

  22. Masanes, L., Müller, M.: A derivation of quantum theory from physical requirements. New J. Phys. 13, 063001 (2011)

    Article  Google Scholar 

  23. Navascués, M., Guryanova, Y., Hoban, M.J., Acín, A.: Almost quantum correlations. Nat. Commun. 6, 6288 (2015)

    Article  Google Scholar 

  24. Navascués, M., Pironio, S., Acín, A.: A convergent hierarchy of semidefinite programs characterizing the set of quantum correlations. New J. Phys. 10(7), 073013 (2008)

    Article  Google Scholar 

  25. Pawlowski, M., Paterek, T., Kaszlikowski, D., Scarani, V., Winter, A., Zukowski, M.: Information causality as a physical principle. Nature 461, 1101–1104 (2009)

    Article  Google Scholar 

  26. Piron, C.: Axiomatique quantique. Helv. Phys. Acta 36, 439–468 (1964)

    MathSciNet  Google Scholar 

  27. Poh, H.S., Joshi, S.K., Ceré, A., Cabello, A., Kurtsiefer, C.: Approaching Tsirelson’s bound in a photon pair experiment. Phys. Rev. Lett. 115, 180408 (2015). http://arxiv.org/abs/1506.01865

    Article  Google Scholar 

  28. Polyakov, A.M.: Conformal symmetry of critical fluctuations. JETP Lett. 12, 381–383 (1970)

    Google Scholar 

  29. Popescu, S., Rohrlich, D.: Nonlocality as an axiom for quantum theory. Found. Phys. 24, 379 (1994)

    Article  MathSciNet  Google Scholar 

  30. Popescu, S.: Nonlocality beyond quantum mechanics. Nat. Phys. 10, 264–270 (2014)

    Article  Google Scholar 

  31. Spekkens, R.: Evidence for the epistemic view of quantum states: a toy theory. Phys. Rev. A 75, 032110 (2007)

    Article  Google Scholar 

  32. Zieler, N.: Axioms for non-relativistic quantum mechanics. Pac. J. Math. 11, 1151–1169 (1961)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexei Grinbaum .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Grinbaum, A. (2016). Quantum Correlations: Challenging the Tsirelson Bound. In: Atmanspacher, H., Filk, T., Pothos, E. (eds) Quantum Interaction. QI 2015. Lecture Notes in Computer Science(), vol 9535. Springer, Cham. https://doi.org/10.1007/978-3-319-28675-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28675-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28674-7

  • Online ISBN: 978-3-319-28675-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics