Abstract
The scientific description of any system depends on the target properties of that description. A detailed, fine-grained account of all individual constituents of a system differs from that of properties at larger scales of granularity, up to the system as a whole. All these level-specific descriptions can be compatible or incompatible with one another. This contribution addresses a particular pair of descriptions of complex dynamical systems: their Liouville dynamics, treating each constituent separately in a conventional state space, and their information dynamics, based on partitions of that state space. The relation between them can be formulated as a commutation relation, in which the commutator quantifies the degree of their incompatibility.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Epistemic states are actually defined as distributions over measurable sets from a \(\sigma \)-algebra in measure theory (beim Graben and Atmanspacher 2006). For a simplified exposition, which captures the very basic ideas, set-theoretical concepts are sufficient (cf. beim Graben and Atmanspacher 2009).
- 2.
The notion of an extended measurement refers to a series of measurements extending over time t.
- 3.
\(H_{KS} > 0\) is only sufficient because time operators T also exist for mixing systems. Precise conditions under which T exists have been first formulated by Misra (1978), shortly after two pioneering papers by Tjøstheim (1976) and Gustafson and Misra (1976). For a later account see Suchanecki and Antoniou (2003).
References
Allefeld, C., Atmanspacher, H., Wackermann, J.: Identifying emergent states from neural dynamics. Chaos 19, 015102 (2009)
Atmanspacher, H.: Is the ontic/epistemic distinctionsufficient to represent quantum systems exhaustively? In: Laurikainen, K.V., Montonen, C., Sunnarborg, K. (eds.) Symposium on the Foundations of Modern Physics 1994, pp. 15–32. Editions Frontières, Gif-sur-Yvette (1994)
Atmanspacher, H.: Ontic and epistemic descriptions of chaotic systems. In: Dubois, D. (ed.) Computing Anticipatory Systems, pp. 465–478. Springer, Berlin (2000)
Atmanspacher, H., Amann, A.: Positive operator valued measures and projection valued measures of non-commutative time operators. Int. J. Theor. Phys. 37, 629–650 (1999)
Atmanspacher, H., beim Graben, P.: Contextual emergence of mental states from neurodynamics. Chaos Complex. Lett. 2, 151–168 (2007)
Atmanspacher, H., beim Graben, P., Filk, T.: Can classical epistemic states be entangled? In: Song, D., Melucci, M., Frommholz, I., Zhang, P., Wang, L., Arafat, S. (eds.) QI 2011. LNCS, vol. 7052, pp. 105–115. Springer, Heidelberg (2011)
Atmanspacher, H., Scheingraber, H.: A fundamental link between system theory and statistical mechanics. Found. Phys. 17, 939–963 (1987)
Banwell, C.N., Primas, H.: On the analysis of high-resolution nuclear magnetic resonance spectra. I. methods of calculating NMR spectra. Mol. Phys. 6, 225–256 (1963)
beim Graben, P., Atmanspacher, H.: Complementarity in classical dynamical systems. Found. Phys. 36, 291–306 (2006)
beim Graben, P., Atmanspacher, H.: Extending the philosophical significance of the idea of complementarity. In: Atmanspacher, H., Primas, H. (eds.) Recasting Reality, pp. 99–113. Springer, Berlin (2009)
beim Graben, P., Filk, T., Atmanspacher, H.: Epistemic entanglement due to non-generating partitions of classical dynamical systems. Int. J. Theoret. Phys. 52, 723–734 (2013)
Birkhoff, G., von Neumann, J.: The logic of quantum mechanics. Ann. Math. 37, 823–843 (1936)
Bohr, N.: The quantum postulate and the recent development of atomic theory. Nature 121, 580–590 (1928)
Bohr, N.: Chemistry and the quantum theory of atomic constitution. J. Chem. Soc. Lond. 134, 349–384 (1932)
Bollt, E.M., Stanford, T., Lai, Y.C., Zyczkowski, K.: What symbolic dynamics do we get with a misplaced partition? On the validity of threshold crossings analysis of chaotic time-series. Physica D 154, 259–286 (2001)
Bowen, R.: Markov partitions for axiom A diffeomorphisms. Am. J. Math. 92, 725–747 (1970)
Busemeyer, J.R., Bruza, P.D.: Quantum Models of Cognition and Decision. Cambridge University Press, Cambridge (2012)
Cornfeld, I.P., Fomin, S.V., Sinai, Y.G.: Ergodic Theory, Chap. 10.6. Springer, Berlin (1982)
Crutchfield, J.P., Packard, N.H.: Symbolic dynamics of noisy chaos. Physica D 7, 201–223 (1983)
Deuflhard, P., Weber, M.: Robust Perron cluster analysis in conformation dynamics. Linear Algebra Appl. 398, 161–184 (2005)
Froyland, G.: Extracting dynamical behavior via Markov models. In: Mees, A.I. (ed.) Nonlinear Dynamics and Statistics, pp. 281–312. Birkhäuser, Boston (2001)
Gaveau, B., Schulman, L.S.: Dynamical Distance: Coarse grains, pattern recognition, and network analysis. Bulletin des Sciences Mathématiques 129, 631–642 (2005)
Gialampoukidis, I., Antoniou, I.: Entropy, age and time operator. Entropy 17, 407–424 (2015)
Goldstein, S.: Entropy increase in dynamical systems. Isr. J. Math. 38, 241–256 (1981)
Grassberger, P., Procaccia, I.: Estimation of the Kolmogorov entropy from a chaotic signal. Phys. Rev. A 28, 2591–2593 (1983)
Gustafson, K., Misra, B.: Canonical commutation relations of quantum mechanics and stochastic regularity. Lett. Math. Phys. 1, 275–280 (1976)
Holton, G.: The roots of complementarity. Daedalus 99, 1015–1055 (1970)
Kolmogorov, A.N.: A new metric invariant of transitive systems and automorphisms of Lebesgue spaces. Dokl. Akad. Nauk SSSR 119, 861–864 (1958)
Koopman, B.: Hamiltonian systems and transformations in Hilbert space. Proc. Natl. Acad. Sci. USA 17, 315–318 (1931)
Lasota and Mackey: Probabilistic Properties of Deterministic Systems. Cambridge University Press, Cambridge (1985)
Lind, D., Marcus, B.: An Introduction to Symbolic Dynamics and Coding. Cambridge University Press, Cambridge (1995)
Misra, B.: Nonequilibrium entropy, Lyapounov variables, and ergodic properties of classical systems. Proc. Natl. Acad. Sci. USA 75, 1627–1631 (1978)
Pauli, W.: Die allgemeinen Prinzipien der Wellenmechanik. In: Geiger, H., Scheel, K. (eds.) Handbuch der Physik, vol. 24, pp. 88–272, p. 140. Springer, Berlin (1933). Reprinted in Flügge, S. (ed.) Encyclopedia of Physics, vol. V, Part 1, pp. 1–168, p. 60. Springer, Berlin (1958)
Prigogine, I.: From Being to Becoming. Freeman, San Francisco (1980)
Primas, H.: Generalized perturbation theory in operator form. Rev. Mod. Phys. 35, 710–712 (1963)
Raggio, G.A., Rieckers, A.: Coherence and incompatibility in W\(^*\)-algebraic quantum theory. Int. J. Theor. Phys. 22, 267–291 (1983)
Ruelle, D.: The thermodynamic formalism for expanding maps. Commun. Math. Phys. 125, 239–262 (1989)
Shalizi, C.R., Moore, C.: What is a macrostate? Subjective observations and objective dynamics (2003). http://xxx.lanl.gov/pdf/cond-mat/0303625
Sinai, Y.G.: On the concept of entropy of a dynamical system. Dokl. Akad. Nauk SSSR 124, 768–771 (1959)
Sinai, Y.G.: Markov partitions and C-diffeomorphisms. Funct. Anal. Appl. 2, 61–82 (1968)
Suchanecki, Z., Antoniou, I.: Time operators, innovations and approximations. Chaos Solitons Fractals 17, 337–342 (2003)
Tjøstheim, D.: A commutation relation for widesense stationary processes. SIAM J. Appl. Math. 30, 115–122 (1976)
Viana, R.L., Pinto, S.E., Barbosa, J.R.R., Grebogi, C.: Pseudo-deterministic chaotic systems. Int. J. Bifurcat. Chaos 13, 3235–3253 (2003)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Atmanspacher, H., beim Graben, P. (2016). On Incompatible Descriptions of Systems Across Scales of Granularity. In: Atmanspacher, H., Filk, T., Pothos, E. (eds) Quantum Interaction. QI 2015. Lecture Notes in Computer Science(), vol 9535. Springer, Cham. https://doi.org/10.1007/978-3-319-28675-4_9
Download citation
DOI: https://doi.org/10.1007/978-3-319-28675-4_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-28674-7
Online ISBN: 978-3-319-28675-4
eBook Packages: Computer ScienceComputer Science (R0)