Skip to main content

On Incompatible Descriptions of Systems Across Scales of Granularity

  • Conference paper
  • First Online:
Quantum Interaction (QI 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9535))

Included in the following conference series:

Abstract

The scientific description of any system depends on the target properties of that description. A detailed, fine-grained account of all individual constituents of a system differs from that of properties at larger scales of granularity, up to the system as a whole. All these level-specific descriptions can be compatible or incompatible with one another. This contribution addresses a particular pair of descriptions of complex dynamical systems: their Liouville dynamics, treating each constituent separately in a conventional state space, and their information dynamics, based on partitions of that state space. The relation between them can be formulated as a commutation relation, in which the commutator quantifies the degree of their incompatibility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Epistemic states are actually defined as distributions over measurable sets from a \(\sigma \)-algebra in measure theory (beim Graben and Atmanspacher 2006). For a simplified exposition, which captures the very basic ideas, set-theoretical concepts are sufficient (cf. beim Graben and Atmanspacher 2009).

  2. 2.

    The notion of an extended measurement refers to a series of measurements extending over time t.

  3. 3.

    \(H_{KS} > 0\) is only sufficient because time operators T also exist for mixing systems. Precise conditions under which T exists have been first formulated by Misra (1978), shortly after two pioneering papers by Tjøstheim (1976) and Gustafson and Misra (1976). For a later account see Suchanecki and Antoniou (2003).

References

  • Allefeld, C., Atmanspacher, H., Wackermann, J.: Identifying emergent states from neural dynamics. Chaos 19, 015102 (2009)

    Article  MathSciNet  Google Scholar 

  • Atmanspacher, H.: Is the ontic/epistemic distinctionsufficient to represent quantum systems exhaustively? In: Laurikainen, K.V., Montonen, C., Sunnarborg, K. (eds.) Symposium on the Foundations of Modern Physics 1994, pp. 15–32. Editions Frontières, Gif-sur-Yvette (1994)

    Google Scholar 

  • Atmanspacher, H.: Ontic and epistemic descriptions of chaotic systems. In: Dubois, D. (ed.) Computing Anticipatory Systems, pp. 465–478. Springer, Berlin (2000)

    Google Scholar 

  • Atmanspacher, H., Amann, A.: Positive operator valued measures and projection valued measures of non-commutative time operators. Int. J. Theor. Phys. 37, 629–650 (1999)

    Article  MathSciNet  Google Scholar 

  • Atmanspacher, H., beim Graben, P.: Contextual emergence of mental states from neurodynamics. Chaos Complex. Lett. 2, 151–168 (2007)

    Google Scholar 

  • Atmanspacher, H., beim Graben, P., Filk, T.: Can classical epistemic states be entangled? In: Song, D., Melucci, M., Frommholz, I., Zhang, P., Wang, L., Arafat, S. (eds.) QI 2011. LNCS, vol. 7052, pp. 105–115. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  • Atmanspacher, H., Scheingraber, H.: A fundamental link between system theory and statistical mechanics. Found. Phys. 17, 939–963 (1987)

    Article  MathSciNet  Google Scholar 

  • Banwell, C.N., Primas, H.: On the analysis of high-resolution nuclear magnetic resonance spectra. I. methods of calculating NMR spectra. Mol. Phys. 6, 225–256 (1963)

    Article  Google Scholar 

  • beim Graben, P., Atmanspacher, H.: Complementarity in classical dynamical systems. Found. Phys. 36, 291–306 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • beim Graben, P., Atmanspacher, H.: Extending the philosophical significance of the idea of complementarity. In: Atmanspacher, H., Primas, H. (eds.) Recasting Reality, pp. 99–113. Springer, Berlin (2009)

    Chapter  Google Scholar 

  • beim Graben, P., Filk, T., Atmanspacher, H.: Epistemic entanglement due to non-generating partitions of classical dynamical systems. Int. J. Theoret. Phys. 52, 723–734 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Birkhoff, G., von Neumann, J.: The logic of quantum mechanics. Ann. Math. 37, 823–843 (1936)

    Article  Google Scholar 

  • Bohr, N.: The quantum postulate and the recent development of atomic theory. Nature 121, 580–590 (1928)

    Article  MATH  Google Scholar 

  • Bohr, N.: Chemistry and the quantum theory of atomic constitution. J. Chem. Soc. Lond. 134, 349–384 (1932)

    Google Scholar 

  • Bollt, E.M., Stanford, T., Lai, Y.C., Zyczkowski, K.: What symbolic dynamics do we get with a misplaced partition? On the validity of threshold crossings analysis of chaotic time-series. Physica D 154, 259–286 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Bowen, R.: Markov partitions for axiom A diffeomorphisms. Am. J. Math. 92, 725–747 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  • Busemeyer, J.R., Bruza, P.D.: Quantum Models of Cognition and Decision. Cambridge University Press, Cambridge (2012)

    Book  Google Scholar 

  • Cornfeld, I.P., Fomin, S.V., Sinai, Y.G.: Ergodic Theory, Chap. 10.6. Springer, Berlin (1982)

    Book  Google Scholar 

  • Crutchfield, J.P., Packard, N.H.: Symbolic dynamics of noisy chaos. Physica D 7, 201–223 (1983)

    Article  MathSciNet  Google Scholar 

  • Deuflhard, P., Weber, M.: Robust Perron cluster analysis in conformation dynamics. Linear Algebra Appl. 398, 161–184 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Froyland, G.: Extracting dynamical behavior via Markov models. In: Mees, A.I. (ed.) Nonlinear Dynamics and Statistics, pp. 281–312. Birkhäuser, Boston (2001)

    Chapter  Google Scholar 

  • Gaveau, B., Schulman, L.S.: Dynamical Distance: Coarse grains, pattern recognition, and network analysis. Bulletin des Sciences Mathématiques 129, 631–642 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Gialampoukidis, I., Antoniou, I.: Entropy, age and time operator. Entropy 17, 407–424 (2015)

    Article  Google Scholar 

  • Goldstein, S.: Entropy increase in dynamical systems. Isr. J. Math. 38, 241–256 (1981)

    Article  MATH  Google Scholar 

  • Grassberger, P., Procaccia, I.: Estimation of the Kolmogorov entropy from a chaotic signal. Phys. Rev. A 28, 2591–2593 (1983)

    Article  Google Scholar 

  • Gustafson, K., Misra, B.: Canonical commutation relations of quantum mechanics and stochastic regularity. Lett. Math. Phys. 1, 275–280 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  • Holton, G.: The roots of complementarity. Daedalus 99, 1015–1055 (1970)

    Google Scholar 

  • Kolmogorov, A.N.: A new metric invariant of transitive systems and automorphisms of Lebesgue spaces. Dokl. Akad. Nauk SSSR 119, 861–864 (1958)

    MathSciNet  MATH  Google Scholar 

  • Koopman, B.: Hamiltonian systems and transformations in Hilbert space. Proc. Natl. Acad. Sci. USA 17, 315–318 (1931)

    Article  Google Scholar 

  • Lasota and Mackey: Probabilistic Properties of Deterministic Systems. Cambridge University Press, Cambridge (1985)

    Book  Google Scholar 

  • Lind, D., Marcus, B.: An Introduction to Symbolic Dynamics and Coding. Cambridge University Press, Cambridge (1995)

    Book  MATH  Google Scholar 

  • Misra, B.: Nonequilibrium entropy, Lyapounov variables, and ergodic properties of classical systems. Proc. Natl. Acad. Sci. USA 75, 1627–1631 (1978)

    Article  Google Scholar 

  • Pauli, W.: Die allgemeinen Prinzipien der Wellenmechanik. In: Geiger, H., Scheel, K. (eds.) Handbuch der Physik, vol. 24, pp. 88–272, p. 140. Springer, Berlin (1933). Reprinted in Flügge, S. (ed.) Encyclopedia of Physics, vol. V, Part 1, pp. 1–168, p. 60. Springer, Berlin (1958)

    Google Scholar 

  • Prigogine, I.: From Being to Becoming. Freeman, San Francisco (1980)

    Google Scholar 

  • Primas, H.: Generalized perturbation theory in operator form. Rev. Mod. Phys. 35, 710–712 (1963)

    Article  MathSciNet  Google Scholar 

  • Raggio, G.A., Rieckers, A.: Coherence and incompatibility in W\(^*\)-algebraic quantum theory. Int. J. Theor. Phys. 22, 267–291 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  • Ruelle, D.: The thermodynamic formalism for expanding maps. Commun. Math. Phys. 125, 239–262 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  • Shalizi, C.R., Moore, C.: What is a macrostate? Subjective observations and objective dynamics (2003). http://xxx.lanl.gov/pdf/cond-mat/0303625

  • Sinai, Y.G.: On the concept of entropy of a dynamical system. Dokl. Akad. Nauk SSSR 124, 768–771 (1959)

    MathSciNet  MATH  Google Scholar 

  • Sinai, Y.G.: Markov partitions and C-diffeomorphisms. Funct. Anal. Appl. 2, 61–82 (1968)

    Article  MATH  Google Scholar 

  • Suchanecki, Z., Antoniou, I.: Time operators, innovations and approximations. Chaos Solitons Fractals 17, 337–342 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Tjøstheim, D.: A commutation relation for widesense stationary processes. SIAM J. Appl. Math. 30, 115–122 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  • Viana, R.L., Pinto, S.E., Barbosa, J.R.R., Grebogi, C.: Pseudo-deterministic chaotic systems. Int. J. Bifurcat. Chaos 13, 3235–3253 (2003)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harald Atmanspacher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Atmanspacher, H., beim Graben, P. (2016). On Incompatible Descriptions of Systems Across Scales of Granularity. In: Atmanspacher, H., Filk, T., Pothos, E. (eds) Quantum Interaction. QI 2015. Lecture Notes in Computer Science(), vol 9535. Springer, Cham. https://doi.org/10.1007/978-3-319-28675-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28675-4_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28674-7

  • Online ISBN: 978-3-319-28675-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics