Abstract
Finding low-cost spanning subgraphs with given degree and connectivity requirements is a fundamental problem in the area of network design. We consider the problem of finding d-regular spanning subgraphs (or d-factors) of minimum weight with connectivity requirements. For the case of k-edge-connectedness, we present approximation algorithms that achieve constant approximation ratios for all \(d \ge 2 \cdot \lceil k/2 \rceil \). For the case of k-vertex-connectedness, we achieve constant approximation ratios for \(d \ge 2k-1\). Our algorithms also work for arbitrary degree sequences if the minimum degree is at least \(2 \cdot \lceil k/2 \rceil \) (for k-edge-connectivity) or \(2k-1\) (for k-vertex-connectivity).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Chan, Y.H., Fung, W.S., Lau, L.C., Yung, C.K.: Degree bounded network design with metric costs. SIAM J. Comput. 40(4), 953–980 (2011)
Cheah, F., Corneil, D.G.: The complexity of regular subgraph recognition. Discrete Appl. Math. 27(1–2), 59–68 (1990)
Cheriyan, J., Vempala, S., Vetta, A.: An approximation algorithm for the minimum-cost \(k\)-vertex connected subgraph. SIAM J. Comput. 32(4), 1050–1055 (2003)
Cheriyan, J., Vetta, A.: Approximation algorithms for network design with metric costs. SIAM J. Discrete Math. 21(3), 612–636 (2007)
Cornelissen, K., Hoeksma, R., Manthey, B., Narayanaswamy, N.S., Rahul, C.S.: Approximability of connected factors. In: Kaklamanis, C., Pruhs, K. (eds.) WAOA 2013. LNCS, vol. 8447, pp. 120–131. Springer, Heidelberg (2014)
Czumaj, A., Lingas, A.: Minimum \(k\)-connected geometric networks. In: Kao, M.Y. (ed.) Encyclopedia of Algorithms, pp. 536–539. Springer, Heidelberg (2008)
Fekete, S.P., Khuller, S., Klemmstein, M., Raghavachari, B., Young, N.E.: A network-flow technique for finding low-weight bounded-degree spanning trees. J. Algorithms 24(2), 310–324 (1997)
Fukunaga, T., Nagamochi, H.: Network design with edge-connectivity and degree constraints. Theor. Comput. Syst. 45(3), 512–532 (2009)
Fukunaga, T., Nagamochi, H.: Network design with weighted degree constraints. Discrete Optim. 7(4), 246–255 (2010)
Fukunaga, T., Ravi, R.: Iterative rounding approximation algorithms for degree-bounded node-connectivity network design. In: Proceedings of the 53rd Annual Symposium on Foundations of Computer Science (FOCS), pp. 263–272. IEEE Computer Society (2012)
Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman and Company, New York (1979)
Goemans, M.X., Bertsimas, D.: Survivable networks, linear programming relaxations and the parsimonious property. Math. Program. 60, 145–166 (1993)
Kammer, F., Täubig, H.: Connectivity. In: Brandes, U., Erlebach, T. (eds.) Network Analysis. LNCS, vol. 3418, pp. 143–177. Springer, Heidelberg (2005)
Khandekar, R., Kortsarz, G., Nutov, Z.: On some network design problems with degree constraints. J. Comput. Syst. Sci. 79(5), 725–736 (2013)
Khuller, S., Raghavachari, B.: Graph connectivity. In: Kao, M.Y. (ed.) Encyclopedia of Algorithms, pp. 371–373. Springer, Heidelberg (2008)
Khuller, S., Vishkin, U.: Biconnectivity approximations and graph carvings. J. ACM 41(2), 214–235 (1994)
Kortsarz, G., Nutov, Z.: Approximating node connectivity problems via set covers. Algorithmica 37(2), 75–92 (2003)
Lau, L.C., Naor, J., Salavatipour, M.R., Singh, M.: Survivable network design with degree or order constraints. SIAM J. Comput. 39(3), 1062–1087 (2009)
Lau, L.C., Singh, M.: Additive approximation for bounded degree survivable network design. SIAM J. Comput. 42(6), 2217–2242 (2013)
Lau, L.C., Zhou, H.: A unified algorithm for degree bounded survivable network design. In: Lee, J., Vygen, J. (eds.) IPCO 2014. LNCS, vol. 8494, pp. 369–380. Springer, Heidelberg (2014)
Lovász, L., Plummer, M.D.: Matching Theory, North-Holland Mathematics Studies, vol. 121. Elsevier (1986)
Singh, M., Lau, L.C.: Approximating minimum bounded degree spanning trees to within one of optimal. J. ACM 62(1), 1:1–1:19 (2015)
Tutte, W.T.: A short proof of the factor theorem for finite graphs. Can. J. Math. 6, 347–352 (1954)
West, D.B.: Introduction to Graph Theory, 2nd edn. Prentice-Hall, Upper Saddle River (2001)
Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms. Cambridge University Press, New York (2011)
Wolsey, L.A.: Heuristic analysis, linear programming and branch and bound. In: Rayward-Smith, V.J. (ed.) Combinatorial Optimization II, Mathematical Programming Studies, vol. 13, pp. 121–134. Springer, Heidelberg (1980)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Manthey, B., Waanders, M. (2015). Approximation Algorithms for k-Connected Graph Factors. In: Sanità , L., Skutella, M. (eds) Approximation and Online Algorithms. WAOA 2015. Lecture Notes in Computer Science(), vol 9499. Springer, Cham. https://doi.org/10.1007/978-3-319-28684-6_1
Download citation
DOI: https://doi.org/10.1007/978-3-319-28684-6_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-28683-9
Online ISBN: 978-3-319-28684-6
eBook Packages: Computer ScienceComputer Science (R0)