
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

A Lagrangian Relaxation Algorithm for
Modularity Maximization Problem

Inaba, Kotohumi
University of Tsukuba

Izunaga, Yoichi
University of Tsukuba

Yamamoto, Yoshitsugu
University of Tsukuba

https://hdl.handle.net/2324/4755278

出版情報：Operations research proceedings. 2014, pp.249-255, 2016-02-21. Springer
バージョン：
権利関係：

A Lagrangian Relaxation Algorithm
for Modularity Maximization Problem

Kotohumi Inaba, Yoichi Izunaga and Yoshitsugu Yamamoto

Abstract The modularity proposed by Newman and Girvan is one of the most com-
mon measure when the nodes of a graph are grouped into communities consisting
of tightly connected nodes. We formulate the modularity maximization problem
as a set partitioning problem, and propose an algorithm based on the Lagrangian
relaxation. To alleviate the computational burden, we use the column generation
technique.

1 Introduction

As social network services grow, clustering on graphs has been attracting more at-
tention. Since Newman and Girvan [5] proposed the modularity as a graph clustering
measure, modularity maximization problem became one of the central subjects of
research. Most of the solution methods proposed so far are heuristic algorithms due
to its NP-hardness, which was shown by Brandes et al. [2], while few exact algo-
rithms have been proposed.

Aloise et al. [1] formulated the problem as a set partitioning problem, which
has to take into account all, exponentially many, nonempty subsets of the node set.
Therefore one cannot secure the computational resource to hold the problem when
the number of nodes is large. Their algorithm is based on the linear programming
relaxation, and uses the column generation technique. Although it provides a tight
upper bound of the optimal value, it can suffer a high degeneracy due to the set
partitioning constraints.

Kotohumi Inaba
University of Tsukuba, Ibaraki 305-8573, Japan, e-mail: s1320486@sk.tsukuba.ac.jp

Yoichi Izunaga
University of Tsukuba, Ibaraki 305-8573, Japan, e-mail: s1130131@sk.tsukuba.ac.jp

Yoshitsugu Yamamoto
University of Tsukuba, Ibaraki 305-8573, Japan, e-mail: yamamoto@sk.tsukuba.ac.jp

1

2 Kotohumi Inaba, Yoichi Izunaga and Yoshitsugu Yamamoto

In this paper, based on the set partitioning formulation, we propose a Lagrangian
relaxation algorithm, and apply the column generation technique in order to alleviate
the computational burden. We also report on some computational experiments.

2 Modularity Maximization Problem

Let G = (V,E) be an undirected graph with the set V = {1,2, . . . ,n} of n nodes and
the set E = {1,2, . . . ,m} of m edges. We say that Π = {C1,C2, . . . ,Ck} is a partition
of V if V =

⋃k
p=1 Cp, Cp ∩Cq = /0 for any distinct p and q, and Cp 6= /0 for any p.

Each member Cp of a partition is called a community. For i, j ∈V let ei j be the (i, j)
element of the adjacency matrix of graph G, and di be the degree of node i, and π(i)
be the index of community which node i belongs to, i.e., π(i) = p means i ∈ Cp.
Then Modularity, denoted by Q(Π), of a partition Π is defined as

Q(Π) =
1

2m ∑
i∈V

∑
j∈V

(
ei j −

did j

2m

)
δ (π(i),π(j)),

where δ is the Kronecker delta. Modularity Maximization problem, (MM) for short,
is the problem of finding a partition of V that maximizes the modularity Q(Π).

Let P denote the family of all nonempty subsets of V . Note that P is composed
of 2n −1 subsets of V . Introducing a binary variable zC for each C ∈ P , a partition
Π is represented by the (2n −1)-dimensional binary vector z = (zC)C∈P defined as

zC =

{
1 when C ∈ Π
0 otherwise.

For each i ∈ V and C ∈ P we define a constant aiC to describe whether node i
belongs to C, i.e., aiC = 1 when i ∈ C and aiC = 0 otherwise. The column aC =
(aiC, . . . ,anC)> is called the incidence vector of community C, i.e., C = {i ∈ V |
aiC = 1}. For each C ∈ P , let fC be

fC =
1

2m ∑
i∈V

∑
j∈V

wi jaiCa jC,

where wi j = (ei j − did j/2m). The constant fC represents the contribution of com-
munity C to the objective function when C is selected as a member of the partition
Π . Thus (MM) is formulated as the following integer programming (P):

(P)

∣∣∣∣∣∣∣∣
maximize ∑

C∈P

fCzC

subject to ∑
C∈P

aiCzC = 1 (∀i ∈V)

zC ∈ {0,1} (∀C ∈ P)

A Lagrangian Relaxation Algorithm for Modularity Maximization Problem 3

We call the first set of constraints set partitioning constraints.

3 Lagrangian Relaxation and Lagrangian Dual Problem

The problem (P) is a difficult problem due to both its integrality and the set partition-
ing constraints. The well-known technique in order to obtain the useful information
about the solution of (P) is Linear Programming relaxation, LP relaxation for short.
Although LP relaxation provides a tight upper bound of the optimal value of (P), it
usually suffers the high degeneracy due to the set partitioning constraints. To over-
come this degeneracy, several techniques have been proposed in the literature, for
example [3, 4]. In this paper we employ the Lagrangian relaxation instead of LP re-
laxation. Here we will give a brief review of Lagrangian relaxation and Lagrangian
dual problem.

We relax the set partitioning constraints and add them to the objective function
as a penalty with Lagrangian multiplier vector λ = (λ1, . . . ,λn)>, and obtain the fol-
lowing Lagrangian relaxation problem (LR(λ)) with only the binary variable con-
straints:

(LR(λ))

∣∣∣∣∣ maximize ∑
C∈P

fCzC + ∑
i∈V

λi(1− ∑
C∈P

aiCzC)

subject to zC ∈ {0,1} (∀C ∈ P).

Let γC(λ) = fC −∑i∈V λiaiC, then the objective function of (LR(λ)) is written as

L(z,λ) = ∑
C∈P

γC(λ)zC + ∑
i∈V

λi.

For a given multiplier vector λ , we can obtain an optimal solution z(λ) of (LR(λ))
by simply setting zC(λ) = 1 if γC(λ) > 0, and zC(λ) = 0 otherwise. We denote the
optimal value of (LR(λ)) by ω(LR(λ)), then ω(LR(λ)) provides an upper bound
of ω(P) for any λ . The problem of finding the best upper bound of ω(P) is called
the Lagrangian dual problem (LRD), which is given as:

(LRD)
∣∣∣∣ minimize ω(LR(λ))
subject to λ ∈ Rn.

One of the most commonly used method for this problem is the subgradient
method. This method uses the subgradient d(λ) = (di(λ))i∈V at λ , defined by
di(λ) = 1−∑C∈P aiCzC(λ) for i ∈V , and updates the Lagrangian multiplier vector
to the direction of d(λ) with a step size µ . We employ the well-known Armijo rule
to determine the step size µ .

4 Kotohumi Inaba, Yoichi Izunaga and Yoshitsugu Yamamoto

4 Proposed Algorithm

As we discussed in the previous section, the optimal solution z(λ) can be obtained
by checking the sign of γC(λ). However it is hard to compute all of γC(λ) owing
to the huge number of variables. The number of variables which are positive at an
optimal solution of (P) is at most the number of nodes, hence we need only a small
number of variables. Therefore we use the column generation technique in order
to alleviate the computation burden. Namely, we start the algorithm with a small
number of variables and gradually add variables as the computation goes on.

We consider a small subfamily C of P and deal with the following subproblem
(P(C)):

(P(C))

∣∣∣∣∣∣∣∣
maximize ∑

C∈C

fCzC

subject to ∑
C∈C

aiCzC = 1 (∀i ∈V)

zC ∈ {0,1} (∀C ∈ C).

We denote the the Lagrangian relaxation problem and the Lagrangian dual problem
corresponding to (P(C)) by (LR(C ,λ)) and (LRD(C)), respectively. Let λ (C) be
an optimal solution of (LRD(C)). Since the variables zC for C ∈ P \C are not
considered in the problem (LR(C ,λ (C))), the optimal solution z(λ (C)) is not nec-
essarily optimal to (LR(λ (C))). When γC(λ (C)) ≤ 0 for all C ∈ P \C , z(λ (C))
is an optimal solution of (LR(C ,λ (C))). On the other hand γC(λ (C)) > 0 holds
for some C ∈ P \C , adding this C to C can lead to an improvement of the op-
timal value of (LR(C ,λ (C))), i.e., ω(LR(C

′
,λ (C))) > ω(LR(C ,λ (C))) where

C
′
= C ∪{C}. Note that λ (C) is not necessarily an optimal solution of (LRD(C

′
)),

hence we solve the problem (LRD(C
′
)) again to obtain an optimal Lagrangian mul-

tiplier λ (C
′
) by the subgradient method.

According to the formulation of Xu et al. [6], the problem of finding C that max-
imizes γC(λ) is formulated as the problem (AP(λ)) with a quadratic concave objec-
tive function:

(AP(λ))

∣∣∣∣∣∣∣∣∣∣∣∣∣

maximize
1
m

m

∑
r=1

xr −
1

4m2

(
∑
i∈V

diyi

)2

− ∑
i∈V

λiyi

subject to xr ≤ yi (∀r = {i, j} ∈ E)
xr ≤ y j (∀r = {i, j} ∈ E)
xr ∈ {0,1} (∀r ∈ E)
yi ∈ {0,1} (∀i ∈V).

For each edge r = {i, j} ∈ E, a binary variable xr is equal to 1 when both end nodes
i, j of edge r belong to the community that maximizes γC(λ), and for each i ∈ V a
variables yi is equal to 1 when node i belongs to the community and 0 otherwise.

From the above discussion, our proposed algorithm is given as follows.

A Lagrangian Relaxation Algorithm for Modularity Maximization Problem 5

Algorithm LCG

Step 1 : Let C and λ be an initial family of nonempty subsets of V and an initial
multiplier vector, respectively.

Step 2 : Solve (LRD(C)) to obtain a near optimal solution λ and the objective value
ω(LRD(C)) by the subgradient method.

Step 3 : Solve (AP(λ)) and set y∗ be an optimal solution.
Step 4 : If ω(AP(λ)) ≤ 0, then set C ∗ := C and ω∗ := ω(LRD(C)).

Output C ∗ and ω∗, and terminate.
Step 5 : Otherwise set C := {i ∈ V | y∗i = 1} and increment C := C ∪{C}. Return

to Step 2.

When this algorithm terminates, we construct the problem (P(C ∗)) from the ob-
tained C ∗, and solve (P(C ∗)) by an IP solver.

The following proposition shows that we can obtain an upper bound of ω(P) at
each iteration of the algorithm.

Proposition 1. Let t be an upper bound of the number of communities at an optimal
solution of (P). Then ∑i∈V λi + t ·ω(AP(λ)) is an upper bound of ω(P) for any
λ ∈ Rn.

If the difference between the upper bound and ω(LRD(C)) is small, we can stop
the algorithm even if ω(AP(λ)) ≤ 0 does not hold.

5 Computational Experiments

We report the computational experiment with Algorithm LCG. The experiment was
performed on a PC with an Intel Core i7, 3.20 GHz processor and 12.0 GB of mem-
ory. We implemented the algorithm in Python 2.7, and used Gurobi 5.6.2 as the IP
solver. We solved the benchmark instances provided by DIMACS. The size and the
known optimal value of each instance is given in Table 1.

Table 1 Instances
name n m ω(P)
Karate 34 78 0.4198

Dolphins 62 159 0.5285
Football 115 613 0.6046

Table 2 Computational results of Algorithm LCG

instance |C ∗| ω∗ ω(P(C ∗)) Gap (%) Time (s)
Karate 62 0.4198 0.4198 0.000 7

Dolphins 112 0.5302 0.5222 1.192 37
Football 192 0.6054 0.6043 0.049 34509

We set C initially to the family of all singletons, i.e., C = {{1}, . . . ,{n}}, and
set an initial multiplier vector λ = 0. Table 2 shows the results of the proposed algo-
rithm for each instance. The columns |C ∗| and ω(P(C ∗)) represent the cardinality
of the final family of C ∗ and the optimal value of (P(C ∗)), respectively. The column
Gap indicates relative gap defined by

6 Kotohumi Inaba, Yoichi Izunaga and Yoshitsugu Yamamoto

Gap =
(

ω(P)−ω(P(C ∗))
ω(P)

)
×100.

The column Time indicates the computation time in seconds.
From Table 2, we observe that Algorithm LCG solved Karate to optimality and

failed to solve the others, but the Gap was less than 2%. Moreover the number of
|C ∗| is quite small.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 10 20 30 40 50 60

ob
j.v

al

iterations

UpperBound
LCG
ω(P)

Fig. 1 ω(LRD(C)) vs. iterations for Dolphins

Fig. 1 shows ω(LRD(C)) and the upper bound in Proposition 1 at each iteration
of the algorithm for the instance Dolphins. We set t to the optimal number of com-
munities in calculating an upper bound of ω(P). ω(LRD(C)) rapidly increases at
an early stage, and increases slowly as the algorithm goes on. Since we observed the
similar results in other instances, we omitted the figures of the others.

References

1. D. Aloise, S. Cafieri, G. Caporossi, P. Hansen, L. Liberti, and S. Pellon, “Column generation
algorithms for exact modularity maximization in networks,” Physical Review, E.82, 2012.

2. U. Brandes, D. Delling, M. Gaertler, R. Görke, M. Hoefer, Z. Nikoloski, and D. Wagner,
“On modularity clustering,” IEEE Transactions on Knowledge and Data Engineering, 20,
pp.172-188, 2008.

3. M. Boschetti, A.Minggozzi, and S.Ricciardelli, “A dual ascent procedure for the set partition-
ing problem,” Discrete Optimization, 5, pp.735-747, 2008.

4. O. du Merle, D. Villeneuve, J. Desrosiers, and P. Hansen, “Stabilized column generation,”
Discrete Mathematics, 194, pp.229-237, 1999.

5. M. E. J. Newman and M. Girvan, “Finding and evaluating community structure in networks,”
Physical Review, E.69, 2004.

6. G.Xu, S.Tsoka and L.Papageorgiou, “Finding community structures in complex networks
using mixed integer optimization,” The European Physical Journal, B.50, pp.231-239, 2007.

