Skip to main content

Row and Column Generation Algorithm for Maximization of Minimum Margin for Ranking Problems

  • Conference paper
  • First Online:
Operations Research Proceedings 2014

Part of the book series: Operations Research Proceedings ((ORP))

  • 1925 Accesses

Abstract

We consider the ranking problem of learning a ranking function from the data set of objects each of which is endowed with an attribute vector and a ranking label chosen from the ordered set of labels. We propose two different formulations: primal problem, primal problem with dual representation of normal vector, and then propose to apply the kernel technique to the latter formulation. We also propose algorithms based on the row and column generation in order to mitigate the computational burden due to the large number of objects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, New York (2006)

    Google Scholar 

  2. Crammer, K., Singer, Y.: Pranking with ranking. In: Dietterich, T.G., Becker, S., Ghahramani, Z. (eds.) Advances in Neural Information Processing Systems 14, pp. 641–647. MIT Press, Cambridge (2002)

    Google Scholar 

  3. Herbrich, R., Graepel, T., Obermayer, K.: Large margin rank boundaries for ordinal regression. In: Smola, A.J., Bartlette, P., Schölkopt, B., Schuurmans, D. (eds.) Advances in Large Margin Classifiers, pp. 115–132. MIT Press, Cambridge (2000)

    Google Scholar 

  4. Liu, T.-Y.: Learning to Rank for Information Retrieval. Springer, Heidelberg (2011)

    Book  Google Scholar 

  5. Shashua, A., Levin, A.: Ranking with large margin principles: two approaches. In: Adv. Neural Inf. Process. Syst. 15 (NIPS 2002), 937–944 (2003)

    Google Scholar 

  6. Schölkopf, B., Herbrich, R., Smola, A.J.: A generalized representer theorem. In: Helmbold, D., Williamson, B. (eds.) Computational Learning Theory, Lecture Notes in Computer Science, vol. 2111, pp. 416–426 (2001)

    Google Scholar 

  7. Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  8. Tatsumi, K., Hayashida, K., Kawachi, R., Tanino, T.: Multiobjective multiclass support vector machines maximizing geometric margins. Pac. J. Optim. 6, 115–140 (2010)

    Google Scholar 

  9. Vapnik, V.N.: Statistical Learning Theory. Wiley, New York (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoichi Izunaga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Izunaga, Y., Sato, K., Tatsumi, K., Yamamoto, Y. (2016). Row and Column Generation Algorithm for Maximization of Minimum Margin for Ranking Problems. In: Lübbecke, M., Koster, A., Letmathe, P., Madlener, R., Peis, B., Walther, G. (eds) Operations Research Proceedings 2014. Operations Research Proceedings. Springer, Cham. https://doi.org/10.1007/978-3-319-28697-6_35

Download citation

Publish with us

Policies and ethics