Skip to main content

Myocardial Infarct Localization Using Neighbourhood Approximation Forests

  • Conference paper
  • First Online:
Statistical Atlases and Computational Models of the Heart. Imaging and Modelling Challenges (STACOM 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9534))

Included in the following conference series:

  • 946 Accesses

Abstract

This paper presents a machine-learning algorithm for the automatic localization of myocardial infarct in the left ventricle. Our method constructs neighbourhood approximation forests, which are trained with previously diagnosed 4D cardiac sequences. We introduce a new set of features that simultaneously exploit information from the shape and motion of the myocardial wall along the cardiac cycle. More precisely, characteristics are extracted from a hyper surface that represents the profile of the myocardial thickness. The method has been tested on a database of 65 cardiac MRI images in order to retrieve the diagnosed infarct area. The results demonstrate the effectiveness of the NAF in predicting the left ventricular infarct location in 7 distinct regions. We evaluated our method by verifying the database ground truth. Following a new examination of the 4D cardiac images, our algorithm may detect misclassified infarct locations in the database.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Fonseca, C., Backhaus, M., Bluemke, D., Britten, R., Chung, J., Cowan, B., Dinov, I., Finn, J., Hunter, P., Kadish, A., Lee, D., Lima, J., Medrano-Gracia, P., Shivkumar, K., Suinesiaputra, A., Tao, W., Young, A.: The cardiac atlas project. An imaging database for computational modeling and statistical atlases of the heart. Bioinformatics 27(16), 2288–2295 (2011)

    Article  Google Scholar 

  2. Perperidis, D., Mohiaddin, R.H., Rueckert, D.: Construction of a 4D statistical atlas of the cardiac anatomy and its use in classification. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3750, pp. 402–410. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  3. Medrano-Gracia, P., Suinesiaputra, A., Cowan, B., Bluemke, D., Frangi, A., Lee, D., Lima, J., Young, A.: An atlas for cardiac MRI regional wall motion and infarct scoring. In: Camara, O., Mansi, T., Pop, M., Rhode, K., Sermesant, M., Young, A. (eds.) STACOM 2012. LNCS, vol. 7746, pp. 188–197. Springer, Heidelberg (2013)

    Google Scholar 

  4. Wei, D., Sun, Y., Ong, S., Chai, P., Teo, L., Low, A.: Three-dimensional segmentation of the left ventricle in late gadolinium enhanced MR images of chronic infarction combining long-and short-axis information. Med. Image Anal. 17(6), 685–697 (2013)

    Article  Google Scholar 

  5. Rohlfing, T., Brandt, R., Menzel, R., Russakoff, D.B., Maurer Jr., C.R.: Quo vadis, atlas-based segmentation. In: Handbook of Biomedical Image Analysis, pp. 435–486. Springer US, New York (2005)

    Google Scholar 

  6. Heckemann, R., Keihaninejad, S., Aljabar, P., Rueckert, D., Hajnal, J., Hammers, A.: Improving intersubject image registration using tissue-class information benefits robustness and accuracy of multi-atlas based anatomical segmentation. Neuroimage 51(1), 221–227 (2010)

    Article  Google Scholar 

  7. Müller, H., Michoux, N., Bandon, D., Geissbuhler, A.: A review of content-based image retrieval systems in medical applications - clinical benefits and future directions. Int. J. Med. Inform. 73(1), 1–23 (2004)

    Article  Google Scholar 

  8. André, B., Vercauteren, T., Buchner, A., Wallace, M., Ayache, N.: A smart atlas for endomicroscopy using automated video retrieval. Med. Image Anal. 15(4), 460–476 (2011)

    Article  Google Scholar 

  9. Margeta, J., Geremia, E., Criminisi, A., Ayache, N.: Layered spatio-temporal forests for left ventricle segmentation from 4D cardiac MRI data. In: Camara, O., Konukoglu, E., Pop, M., Rhode, K., Sermesant, M., Young, A. (eds.) STACOM 2011. LNCS, vol. 7085, pp. 109–119. Springer, Heidelberg (2012)

    Google Scholar 

  10. Swets, D., Weng, J.: Using discriminant eigenfeatures for image retrieval. IEEE T. Pattern Anal. 8, 831–836 (1996)

    Article  Google Scholar 

  11. Konukoglu, E., Glocker, B., Zikic, D., Criminisi, A.: Neighbourhood approximation using randomized forests. Med. Image Anal. 17(7), 790–804 (2013)

    Article  Google Scholar 

  12. Cerqueira, M., Weissman, N., Dilsizian, V., Jacobs, A., Kaul, S., Laskey, W., Pennell, D., Rumberger, J., Ryan, T., Verani, M.: Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. Circulation 105, 539–542 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Alistair Young for providing the DETERMINE database. This research is partially funded by the ERC Advanced Grant MedYMAFunding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Héloïse Bleton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Bleton, H., Margeta, J., Lombaert, H., Delingette, H., Ayache, N. (2016). Myocardial Infarct Localization Using Neighbourhood Approximation Forests. In: Camara, O., Mansi, T., Pop, M., Rhode, K., Sermesant, M., Young, A. (eds) Statistical Atlases and Computational Models of the Heart. Imaging and Modelling Challenges. STACOM 2015. Lecture Notes in Computer Science(), vol 9534. Springer, Cham. https://doi.org/10.1007/978-3-319-28712-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28712-6_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28711-9

  • Online ISBN: 978-3-319-28712-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics