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Abstract. Variants of the must testing approach have been successfully applied in service
oriented computing for analysing the compliance between (contracts exposed by) clients and
servers or, more generally, between two peers. It has however been argued that multiparty
scenarios call for more permissive notions of compliance because partners usually do not have
full coordination capabilities. We propose two new testing preorders, which are obtained
by restricting the set of potential observers. For the first preorder, called uncoordinated,
we allow only sets of parallel observers that use different parts of the interface of a given
service and have no possibility of intercommunication. For the second preorder, that we
call individualistic, we instead rely on parallel observers that perceive as silent all the
actions that are not in the interface of interest. We have that the uncoordinated preorder
is coarser than the classical must testing preorder and finer than the individualistic one.
We also provide a characterisation in terms of decorated traces for both preorders: the
uncoordinated preorder is defined in terms of must-sets and Mazurkiewicz traces while
the individualistic one is described in terms of classes of filtered traces that only contain
designated visible actions and must-sets.

1. Introduction

A desired property of communication-centered systems is the graceful termination of the
processes involved in a multiparty interaction, i.e., every possible interaction ends successfully,
in the sense that there are neither messages waiting forever to be sent nor sent messages which
are never received. The theories of session types [THK94, HVK98] and of contracts [CGP08,
CGP09, BZ09, LP07] are commonly used to ensure such kind of properties. The key idea
behind both approaches is to associate each process a with type (or contract) that gives an
abstract description of its external, visible behaviour and to use type checking to verify the
correctness of behaviours.

Processes are often defined as sequential nondeterministic ccs processes [Mil89] describ-
ing the offered communications, and are built-up from send and receive actions. These
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activities are abstractly represented either as output and input actions that take place
over a set of channels or as internal τ actions. Basic actions can be composed sequentially
(prefix operator “.”) or as alternatives (non deterministic choice “+”). Typically, the
language for describing processes does not have any operator for parallel composition. It is
assumed that all possible interleavings are made explicit in the description of the service
and communication is only used for modelling the interaction among different processes.

In client-server scenarios, i.e., in settings involving just two processes, variants of the
must testing preorder has been used to compare alternative implementations of servers and
clients [BH13]. Technically, two given processes p and q are related via the must preorder
(p vmust q) if q satisfies all observers that are satisfied by p. Consequently, p and q are
considered equivalent (p ≈must q) if they satisfy exactly the same observers. Standardly,
an observer is a unique (sequential) process that runs in parallel with the tested process
and, consequently, all interactions with the tested process are handled by a unique, central
process, i.e., the observer itself.

If one considers a multiparty setting, each process may concurrently interact with several
other partners and its interface is often (logically) partitioned by allowing each partner
to communicate only through a dedicated part of the interface. Consider the following
scenario involving three partners: an organisation (the broker) that sells goods produced by
a different company (the producer) to a specific customer (the client). The behaviour of the
broker can be described by the following process:

B = req .order .inv .0

The broker accepts requests on channel req and then places an order to the producer with
the message order and sends an invoice to the client with the message inv . A client may
behave as the process C below, which first sends a request on channel req and then expects
the invoice on channel inv , i.e.,

C = req .inv .0

A producer may be modelled by a process that simply accepts an order over channel ord ,
i.e.,

P = order .0

In this scenario, the broker uses the channels req and inv to interact with the client, while it
interacts with the producer over the channel order . Moreover, the client and the producer
do not know each other and are completely independent. Hence, the order in which messages
order and inv are sent is completely irrelevant for them. In fact, they would be equally
happy with a broker defined as follows:

B′ = req .inv .order .0

Nevertheless, these two different implementations are not considered must-equivalent. In
these situations, the classical must testing preorder turns out to be unnecessarily discrimi-
nating.

The main goal of this paper is to introduce alternative, less discriminating, preorders
that take into account the distributed nature of the observers and their possibly limited
coordination and interaction capabilities. A first preorder, called uncoordinated must preorder,
is obtained by assuming that a set of observers of a given process interact with it via fully
disjoint sets of ports, i.e., they use different parts of its interface, have no possibility of
intercommunication, and all of them terminate successfully in every possible interaction.
It is however worth noting that these assumptions about the absence of communication
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among observers do not fully eliminate the possibility for observers of being mutually
influenced, e.g., when one observer does not enable a communication on some ports. Due
to this, it is possible to differentiate B from B′ above when one of the observers refuses
to synchronise over a port, e.g., if the client does not enable the synchronisation over the
channel inv . Consider a client C ′ = req .0 that sends a request and terminates without
accepting the invoice. While P and C ′ always terminate their interaction with B, this is
not the case when interacting with B′ because communication over channel order is never
enabled. Consequently, these two implementations of the broker are distinguished by the
uncoordinated must preorder. However, the uncoordinated must preorder allows for the
reordering of actions. For instance, the following two implementations of the broker are
considered equivalent under the uncoordinated must preorder.

B′′ = req .(order .inv .0 + order .0 + inv .0)

B′′′ = req .(inv .order .0 + order .0 + inv .0)

We remark that the processes C ′ and P are not able to distinguish B′′ from B′′′, because
they both terminate when interacting with either B′′ and B′′′. We also note that a client
behaving as described by C will not be satisfied neither by B′′ nor B′′′ because they both
may decide not to communicate over inv .

The second preorder, which we call individualistic must preorder, allows observers to
take for granted the execution of those actions of the process that are not explicitly of
interest for them (i.e., not in their alphabet). For instance, a client in the previous scenario
assumes that the producer will always enable the communication over the channel order . In
the individualistic must preorder, the processes B and B′ turn out to be indistinguishable.

The preorders are, as usual, defined in terms of the outcomes of experiments by specific
sets of observers. For defining the uncoordinated must preorder, we allow only sets of parallel
observers that cannot intercommunicate and do challenge processes via disjoint parts of
their interface. For defining the individualistic must preorder, we instead rely on parallel
observers that, again, cannot intercommunicate but in addition perceive as silent all the
actions that are not part of the interface of their interest. This is instrumental to avoid that
a specific observer recovers information about other involved observers. As expected, we
have that the uncoordinated preorder is coarser than the classical must testing preorder and
finer than the individualistic one.

Just like for classical testing preorders, we provide a characterisation for both new
preorders in terms of decorated traces, which avoids dealing with universal quantifications over
the set of observers whenever a specific relation between two processes has to be established.
The alternative characterisations make it even more evident that our preorders permit
action reordering. Indeed, the uncoordinated preorder is defined in terms of Mazurkiewicz
traces [Maz95] while the individualistic one is described in terms of classes of traces quotiented
via specific sets of visible actions. We would like to remark that our preorders are different
from those defined in [BZ08, Pad10, MYH09], which also permit action reordering by relying
on buffered communication; additional details will be provided in Section 7.

Synopsis The remainder of this paper is organised as follows. In Section 2 we recall
the basics of the classical must testing approach. In Section 3 and Section 4 we present the
theory of uncoordinated and individualistic must testing preorders and their characterisation
in terms of traces. In Section 5 we show that the uncoordinated preorder is coarser than the
must testing preorder but finer than the individualistic one. In Section 6 we describe a Prolog
implementation of the uncoordinated and individualistic preorders for the finite fragment of
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our specification language and use it for analysing a scenario involving a replicated data
store. Finally, we discuss some related work and future developments in Section 7.

This paper is a revised and extended version of [NM15]. We fix an incorrect characteri-
sation of the uncoordinated preorder [NM15], and provide full proofs of previously published
results. In addition, we give a prototype implementation in Prolog of the alternative charac-
terisation of the proposed preorders for the fragment of the calculus with only finite processes
and illustrate the usability of the proposed preorders by using them to reason on different
implementations of components in a replicated data store (Section 6).

2. Processes and testing preorders

Let N be a countable set of action names, ranged over by a, b, . . .. As usual, we write
co-names in N as a, b, . . . and assume a = a. We will use α, β to range over Act = (N ∪N ).
Moreover, we consider a distinguished internal action τ not in Act and use µ to range over
Act ∪ {τ}. We fix the language for defining processes as the sequential fragment of ccs
extended with a success operator, as specified by the following grammar.

p, q ::= 0 | 1 | µ.p | p+ q | X | recX .p

The process 0 stands for the terminated process, 1 for the process that reports success and
then terminates, and µ.p for a process that executes µ and then continues as p. Alternative
behaviours are specified by terms of the form p+ q, while recursive ones are introduced by
terms like recX .p. We denote by P the set of all processes. We write n(p) for the set of
names a ∈ N such that either a or a occur in p.

The operational semantics of processes is given in terms of a labelled transition system

(lts) p
λ−→ q with λ ∈ Act ∪ {τ,X}, where X signals the successful termination of an

execution.

Definition 2.1 (Transition relation). The transition relation on processes, noted
λ−→, is the

least relation satisfying the following rules

1
X−→ 0 µ.p

µ−→ p
p

λ−→ p′

p+ q
λ−→ p′

q
λ−→ q′

p+ q
λ−→ q′

p[recX .p/X]
λ−→ p′

recX .p
λ−→ p′

Multiparty applications, named configurations, are built by composing processes concur-
rently. Formally, configurations are given by the following grammar.

c, d, o ::= p | c‖d
We denote by O the set of all configurations. We sometimes write Πi∈0..npi for the

parallel composition p0 ‖ . . . ‖ pn. The operational semantics of configurations, which
accounts for the communication between processes, is obtained by extending the lts in
Definition 2.1 with the following rules:

c
µ−→ c′

c ‖ d µ−→ c′ ‖ d

d
µ−→ d′

c ‖ d µ−→ c ‖ d′
c

α−→ c′ d
α−→ d′

c ‖ d τ−→ c′ ‖ d′
c
X−→ c′ d

X−→ d′

c ‖ d X−→ c′ ‖ d′
All rules are standard apart for the last one that is not present in [NH84]. This rule

states that the concurrent composition of processes can report success only when all processes
in the composition do so.

We write c
λ−→ when there exists c′ such that c

λ−→ c′; ⇒ for the reflexive and transitive

closure of
τ−→; c

λ
=⇒ c′ for λ ∈ Act ∪ {X} and c =⇒ λ−→=⇒; c

λ0...λn=⇒ c′ for c
λ0=⇒ . . .

λn=⇒ c′,
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and c
s

=⇒ with s ∈ (Act ∪ {X})∗ if there exists c′ such that c
s

=⇒ c′. We say that

co
µ0−→ . . . ci

µi−→ . . . is successful when there exists j s.t. cj
X−→; it is unsuccessful otherwise.

We write str(c) and init(c) to denote the sets of strings and enabled actions of c, defined
as follows

str(c) = {s ∈ (Act ∪ {X})∗ | c s
=⇒} init(c) = {λ ∈ Act ∪ {X} | c λ

=⇒}
As behavioural semantics, we consider the must-testing preorder [NH84], which is defined

in terms of the computations of a process under test p and an observer o. A computation of
p ‖ o is a sequence of τ transitions, i.e.,

p ‖ o = p0 ‖ o0
τ−→ . . .

τ−→ pk ‖ ok
τ−→ . . .

A computation is maximal if it is either infinite or its last term pn ‖ on is such that

pn ‖ on 6
τ−→. We say it is observer-successful if there exists j ≥ 0 such that oj

X−→, and
observer-unsuccessful otherwise.

Definition 2.2 (must). We write p must o iff for each maximal computation of p ‖ o is
observer-successful.

The notion of passing a test (or satisfying an observer) represents the fact that an
observer built-up from the parallel composition of processes is able to report success in every
possible interaction with the process under test. It is then natural to compare processes
according to their capacity to satisfy observers.

The standard framework of [NH84] can be recovered by considering only observers
without parallel composition.

Definition 2.3 (must preorder). p vmust q iff ∀r ∈ P : p must r implies q must r. We write
p ≈must q when both p vmust q and q vmust p.

2.1. Semantic characterisation. The must testing preorder has been characterised in
terms of (i) the sequences of actions that a process may perform, and (ii) the possible
sets of actions that it may perform after executing a particular sequence of actions [NH84].
This characterisation relies on a few auxiliary predicates and functions that are presented
below. A process p diverges, written p ⇑, when it exhibits an infinite, internal computation

p
τ−→ p0

τ−→ p1
τ−→ . . .. We say p converges, written p ⇓, otherwise. For s ∈ Act∗, the

convergence predicate is inductively defined by the following rules:

• p ⇓ ε if p ⇓.

• p ⇓ α.s if p ⇓ and p
α

=⇒ p′ implies p′ ⇓ s.
The residuals of a process p (or a set of processes P ) after the execution of s ∈ Act∗ is given
by the following equations

• (p after s) = {p′ | p s
=⇒ p′}.

• (P after s) = {p′ | p ∈ P, p′ ∈ (p after s)}.
Definition 2.4 (Must-set). A must-set of a process p (or set of processes P ) is L ⊆ Act,
and L finite such that

• p MUST L iff ∀p′ such that p =⇒ p′, ∃α ∈ L such that p′
α

=⇒.
• P MUST L iff ∀p ∈ P.p MUST L.

Then, the must testing preorder can be characterised in terms of strings and must-sets as
follows.
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Definition 2.5. p �must q if for every s ∈ Act∗, for all finite L ⊆ Act, if p ⇓ s then

• q ⇓ s.
• (p after s) MUST L implies (q after s) MUST L.

Theorem 2.6 [NH84, Theorem 6.4.5]. vmust = �must.

3. A testing preorder with uncoordinated observers

The must testing preorder is defined in terms of the tests that each process is able to pass.
Remarkably, the classical setting can be formulated by considering only sequential tests (see
the characterisation of minimal tests in [NH84]). Each sequential test is a unique, centralised
process that handles all the interaction with the process under test and, therefore, has a
complete view of the externally observable behaviour of the process. For this reason, we
refer to the classical must testing preorder as a centralised preorder.

Multiparty interactions are generally structured in such a way that pairs of partners
communicate through dedicated channels, for example, when relying on partner links in
service oriented models or buffers in communicating machines [BBO12]. Conceptually, the
interface (i.e., the set of channels) of a process is partitioned and the process interacts with
each partner by using only specific sets of channels in its interface. In addition, there are
scenarios (as the one discussed in Section 1) in which partners frequently do not know each
other and cannot communicate directly. As a direct consequence, the partners of a process
cannot establish causal dependencies among actions that take place over different parts
of the interface. These constraints reduce the discriminating power of partners and call
for equivalences that equate processes that cannot be distinguished by sets of independent
sequential processes.

Example 3.1. Consider the classical scenario for planning a trip. A user U interacts with
a broker B, which is responsible for booking flights provided by a service F and hotel rooms
available at service H. The expected interaction can be described as follows: U makes a
booking request by sending a message req to B (we will just describe the interaction and
abstract away from data details such as trip destination, departure dates and duration).
Depending on the request, B may internally decide to contact service F (for booking just a
flight ticket), H (for booking rooms) or both. Service B uses channels reqF and reqH to
respectively contact F and H (for the sake of simplicity, we assume that any request to F and
H will be granted). Then, the expected behaviour of B can be described with the following
process. (As usual, τ actions and + are combined to model internal, non-deterministic
choices in a process.)

B0
def
= req .(τ.reqF .0 + τ.reqH .0 + τ.reqH .reqF .0)

In this process, the third branch represents B’s choice to contact first H and then F .
Nevertheless, the other partners (U , F and H) are not affected in any way by this choice,
thus they would be equally happy with alternative definitions such as:

B1
def
= req .(τ.reqF .0 + τ.reqH .0 + τ.reqF .reqH .0)

B2
def
= req .(τ.reqF .0 + τ.reqH .0 + τ.reqH .reqF .0 + τ.reqF .reqH .0)

B0, B1 and B2 are distinguished by the must testing equivalence. It suffices to consider
o0 = req .(τ.1 + reqF .(τ.1 + reqH .0)) for showing that B0 6vmust B1 and that B0 6vmust B2,
and use o1 = req .(τ.1 + reqH .(τ.1 + reqF .0)) for proving that B1 6vmust B2.
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This section is devoted to the definition and characterisation of a preorder, called
uncoordinated must preorder, that is coarser than the classical must preorder and relates
processes that cannot be distinguished by distributed contexts. The uncoordinated must
preorder is obtained by restricting the set of observers to parallel processes that do not
share channels. We will say I = {Ii}i∈0...n is an interface whenever I is a partition of Act
and ∀α ∈ Act, α ∈ Ii implies α ∈ Ii. In the rest of this paper we will usually write only the
relevant part of an interface. For instance, we will write {{a}, {b}} for any interface {I0, I1}
such that a ∈ I0 and b ∈ I1. Then, the observers used by the uncoordinated must testing
preorder are introduced by the following definition.

Definition 3.2 (Uncoordinated observer). Let I = {Ii}i∈0...n be an interface. A process
Πi∈0..noi = o0 ‖ . . . ‖ on is an uncoordinated observer over I if n(oi) ⊆ Ii for all i ∈ 0 . . . n.

We say o is an uncoordinated observer and omit the interface when no confusion arises.
In our setting, which does not involve name mobility, the fact that I = {Ii} is a partition
of Act and n(oi) ⊆ Ii suffices to avoid a direct communication among the processes of an
uncoordinated observer. As a consequence, a distributed observer cannot impose a total
order between actions that are controlled by different processes of the observer. Indeed, the
executions of a distributed observer are the interleavings of the executions of all processes
{oi}i∈0..n (this property is formally stated in Section 3.1, Lemma 3.6). We remark that a
configuration does report success (i.e., perform action X) only when all processes in the
composition do report success; consequently an uncoordinated observer reports success when
all its components report success simultaneously. Our definition of success deviates from the
original setup of [NH84]. If success were not synchronised, e.g., every process would pass
the observer o = a.0 || 1 because o would be able to report success immediately. This is not
the case in our setting. In fact, each component of an uncoordinated observer accounts for
the view that a particular partner has about the process under test, and we expect every
component of the observer to be able to report success when a process passes a test.

Definition 3.3 (Uncoordinated must preorder vI
unc). Let I = {Ii}i∈0...n be an interface.

We say p vI
unc q iff for all uncoordinated observer o over I, p must o implies q must o. We

write p ≈I
unc q when both p vI

unc q and q vI
unc p.

Example 3.4. Consider the scenario presented in Example 3.1 and the following interface
I = {{req}, {reqF}, {reqH }} for the process B that thus interacts with each of the other
partners by using a dedicated part of its interface. It can be shown that the three definitions
for B in Example 3.1 are equivalent when considering the uncoordinated must testing
preorder, i.e., B0 ≈I

unc B1 ≈I
unc B2. The actual proof, which uses the (trace-based) alternative

characterization of the preorder, is deferred to Example 3.14.

3.1. Semantic characterisation. We now characterise the uncoordinated must testing
preorder in terms of traces and must-sets. In order to do that, we shift from strings to
Mazurkiewicz traces [Maz86]. A Mazurkiewicz trace is a set of strings, obtained by permuting
independent symbols. Traces represent concurrent computations, in which commuting
symbols stand for actions that execute independently of one another and non-commuting
symbols are causally dependent actions. We start by summarising the basics of the theory
of traces in [Maz86].

Let D ⊆ Act × Act be a finite equivalence relation, called the dependency relation,
that relates the actions that cannot be commuted. Thus, if (α, β) ∈ D then α and β
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are considered causally dependent. Symmetrically, ID = (Act × Act) \ D stands for the
independency relation with (α, β) ∈ ID meaning that α and β are concurrent.

The trace equivalence induced by the dependency relation D is the least congruence
≡D on Act∗ such that for all α, β ∈ Act : (α, β) ∈ ID =⇒ αβ ≡D βα.

The equivalence classes of ≡D, denoted by [s]D, are the Mazurkiewicz traces, namely
the strings quotiented via ≡D. We remark that no action can commute with X because ID
is defined over Act× Act.

Let I be an interface, the dependency relation induced by I is D =
⋃
I∈I I × I.

Example 3.5. Consider the interface I = {{req}, {reqF}, {reqH }} in Example 3.4. We
recall that I = {{req}, {reqF}, {reqH }} is a convenient notation for any partition of Act such
that ∀α ∈ Act, α ∈ Ii implies α ∈ Ii. Consequently,

I = {{req , req , . . .}, {reqF , reqF , . . .}, {reqH , reqH , . . .}}

The dependency relation induced by I is

D = {(req , req), (req , req), (req , req), (req , req), . . . , (reqF , reqF ), . . . , (reqH , reqH ), . . .}

Then, (α, β) ∈ ID iff (α, β) 6∈ D. The relation ID basically states that actions that take
place over channels that belong to different parts of the interface can commute. For instance,
req , reqH and reqF are independent, and hence

req reqH reqF ≡D req reqF Reqh ≡D reqH reqF req ≡D . . .

Consequently,

[req reqH reqF ]D = {req reqH reqF , req reqF reqH , reqH reqF req , . . .}

On the contrary, actions that take place over channels in the same part of the interface are
dependent and cannot commute. Hence, req req 6≡D req req .

Now we are able to characterise the behaviour of an uncoordinated observer. We start
by formally stating that an uncoordinated observer reaches the same configuration after
executing any of the strings in the same equivalence class. This result is instrumental to the
proof of the alternative characterisation of the uncoordinated preorder.

Lemma 3.6. Let o = Πi∈0..noi be an uncoordinated observer over I = {Ii}i∈0..n and D the

dependency relation induced by I. Then, for all s ∈ Act∗ and t ∈ [s]D we have o
s

=⇒ o′ iff

o
t

=⇒ o′.

Proof. The proof follows by induction on the length |s| = |t| = n.

• n = 0,1. Immediate, because s = t.
• n > 1. By the Levi’s Lemma for traces [Maz95, Theorem 1], any possible choice of
v, w, x, y such that s = vw and t = xy, implies that v ≡D z1z2, w ≡D z3z4, x ≡D z1z3,
y ≡D z2z4 with (z2, z3) ∈ ID. Consider a decomposition such that |v|, |w|, |x|, |y| > 0 (this

is always possible, because n > 1). By inductive hypothesis on the reductions o
v

=⇒ o′′ and

o′′
w

=⇒ o′, we have o
v

=⇒ o′′
w

=⇒ o′ iff o
z1=⇒ o1

z2=⇒ o2
z3=⇒ o3

z4=⇒ o′. Since z2 and z3 are

independent they take part on different components of the observer and o1
z2=⇒ o2

z3=⇒ o3
iff o1

z3=⇒ o′2
z2=⇒ o3. Consequently, o

v
=⇒ w

=⇒ o′ iff o
z1=⇒ o1

z2=⇒ o2
z3=⇒ o3

z4=⇒ o′ iff

o
z1=⇒ o1

z3=⇒ o′2
z2=⇒ o3

z4=⇒ o′. By inductive hypothesis on reductions o
z1z3=⇒ o′2 and

o′2
z2z4=⇒ o′ we have o

z1=⇒ o1
z2=⇒ o′2

z3=⇒ o3
z4=⇒ o′ iff o

x
=⇒ y

=⇒ o′.
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Lemma 3.7. Let o = Πi∈0..noi be an uncoordinated observer over I = {Ii}i∈0..n and D the
dependency relation induced by I. Then, ∀s ∈ Act∗, t ∈ [s]D,

(1) s ∈ str(o) implies t ∈ str(o).
(2) o ⇓ s implies o ⇓ t.
(3) (o after s) MUST L implies (o after t) MUST L.

(4) If there exists an unsuccessful computation o
s

=⇒, then there exists an unsuccessful

computation o
t

=⇒.

Proof. All items follow from Lemma 3.6. We illustrate (2). By contradiction. Assume

o ⇓ s and o ⇑ t. Then, there exist t1, t2 such that t = t1t2, o
t1=⇒ o′ and o′ ⇑. Without

loss of generality, we assume that o
t1=⇒ o′ is minimal, i.e., o = o0

µ1−→ o1 . . .
µk−→ ok = o′

with t1 = µ1 . . . µk and ∀i < k.oi ⇓. Since o′ = Πi∈0..nri, there exists h ∈ 0..n s.t. rh ⇑.
Then, take s1 and s2 such that s = s1s2 and s1 � Ih = t1 � Ih. By the Levi’s Lemma for
traces [Maz95, Theorem 1], we have that t1 ≡D z1z2, t2 ≡D z3z4, s1 ≡D z1z3, s2 ≡D z2z4

with (z2, z3) ∈ ID. Since (z2, z3) ∈ ID, we have o
t1=⇒ z3=⇒ o′′ and o′′ ⇑. By Lemma 3.6,

o
s1=⇒ z2=⇒ o′′, which contradicts the hypothesis that o ⇓ s.

The alternative characterisation for the uncoordinated preorder follows along the lines
of the one for the classical must testing preorder, when Mazurkiewicz traces are considered
instead of strings of actions. For this reason, we extend the notions of transition relation,
convergence and residuals to Mazurkiewicz traces.

We now focus on the definition of the transition relation, which is instrumental for the
next definitions. We first note that, differently from centralised must testing preorder, string
inclusion may not hold for the uncoordinated preorders. For instance, take p = τ.a.0 + τ.b.0
and q = a.b.0 over the interface I = {{a}, {b}}. Note that p vI

unc q because any uncoordinated
observer that passes p is happy regardless of whether a and b are executed. Moreover, such
observer would be unable to detect if both a and b are executed because those actions take
place over different parts of the interface. Hence, str(q) 6⊆ str(p) because a.b ∈ str(q) but
a.b 6∈ str(p) despite p vI

unc q. Our notion of reduction w.r.t a Mazurkiewicz trace will account

for such mismatch and, e.g., p
[a.b]D
=⇒ 0 will hold. Intuitively, the relation

[s]D
=⇒ accounts for

reductions in which s may be partially executed over some of the parts of the interface (but
complete in at least one of them).

We write s <D t iff t ∈ [ss′]D for some s′ 6= ε, i.e., t extends s (up-to the swapping of
independent actions), and s ≤D t stands for s <D t or s ≡D t. Then, the set of maximal
reductions of p within a trace [s]D is

str(p, [s]D) = max
<D

{t | t ∈ str(p), t ≤D s}

where max<D denotes the maximal elements of a set according to the order <D. If t ∈
str(p, [s]D) then t cannot be extended with any symbol a such that t′ ≡D ta ∈ str(p, [s]D)

and p
t′

=⇒.
The following last ingredient allows us to ensure that different maximal prefixes in

str(p, [s]D) actually execute the actions in [s]D (although some prefixes can be partial). We
recall that � stands for the operation that projects a string over an alphabet. Let I be
the interface that induces the dependency relation D, we write str(p, [s]D)† if str(p, [s]D)
jointly-completes [s]D, which is defined by

str(p, [s]D)† ⇐⇒ ∀I ∈ I.∃t ∈ str(p, [s]D).s � I = t �
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Example 3.8. Consider the processes p = τ.a.0 + τ.b.0 and q = a.b.0 and the interface
I = {{a}, {b}}. Let D be the dependency relation induced by I. Then, we have

str(p) = {ε, a, b}
str(q) = {ε, a, b, a.b}

The restriction of <D to the elements in str(q) is

{(ε, a), (ε, b), (a, a.b), (b, a.b)}
Note that b <D ab because b can be extended with a and ab ∈ [ba]D. Then,

str(p, [a.b]D) = max<D{t | t ∈ str(p), t ≤D a.b} = max<D{ε, a, b} = {a, b}
str(q, [a.b]D) = max<D{t | t ∈ str(q), t ≤D a.b} = max<D{ε, a, b, a.b} = {a.b}

Both cases jointly-completes [a.b]D, i.e., str(p, [a.b]D)† and str(q, [a.b]D)† do hold.
On the contrary, if we consider r = a.0 we have that str(r, [a.b]D) = {a}, which does

not jointly-complete [a.b]D, because none of the strings in str(r, [a.b]D) matches b.

Let D be the dependency relation induced by the interface I. We let

• p [s]D
=⇒ p′ if and only if str(p, [s]D)† and ∃s′ ∈ str(p, [s]D) such that p

s′
=⇒ p′.

• p ⇓ [s]D if ∀s′ ∈ [s]D then p ⇓ s′.
• (p after [s]D) = {p′ | p [s]D

=⇒ p′}.
We adopt usual conventions for abbreviating notation when dealing with transition relations

and write, e.g., p
[s]D
=⇒ instead of there exists p′ such that p

[s]D
=⇒ p′. Analogously, p 6 [s]D=⇒ stands

for there does not exist p′ such that p
[s]D
=⇒ p′.

In the definition below, the condition L ⊆ I with I ∈ I captures the idea that each
observation is relative to a specific part of the interface.

Definition 3.9. Let I be an interface and D the dependency relation induced by I. Then,
p �I

unc q if for every s ∈ Act∗, for any part I ∈ I, for all finite L ⊆ I, if p ⇓ [s]D then

(1) q ⇓ [s]D.
(2) (p after [s]D) MUST L implies (q after [s]D) MUST L.

The following three lemmata are instrumental to the proof of the correspondence theorem
and characterise the relation between the Mazurkiewicz traces of related processes.

Lemma 3.10. Let I be an interface and D the dependency relation induced by I. If p vI
unc q

then for all s ∈ Act∗ we have that p ⇓ [s]D implies

(1) q ⇓ [s]D.

(2) s ∈ str(q) implies that p
[s]D
=⇒.

Proof. Assume I = {Ii}i∈0...n and D the induced dependency relation.

(1) By contradiction. Suppose there exists s = a1 . . . am such that p ⇓ [s]D and q ⇑ [s]D.
Then, take the observer o = Πi∈0,...noi with oi defined as follows

oi = τ.1 + bi1.(τ.1 + . . . (τ.1 + biki .τ.1) . . .) with s � Ii = bi1 . . . b
i
ki

For each maximal computation of p ‖ o, we proceed by unzipping the computation

to conclude that o
t

=⇒ and p
t

=⇒ for some t. Note that o ⇓ t for all t ∈ Act∗ and

o
t

=⇒ implies that there exists t′ such that tt′ ∈ [s]D. Since p ⇓ [s]D, we have p ⇓ t.
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Consequently, every maximal computation of p ‖ o is finite, i.e., p ‖ o =⇒ p′ ‖ o′ 6−→.

By induction on the length of t, it follows that o
t

=⇒ o′ 6−→ implies o′ = Πi∈0,...n1.
Consequently, every maximal computation of p ‖ o is observer-successful and p must o.

Since q ⇑ [s]D there exists tt′ ∈ [s]D such that q
t

=⇒ q0 and q0 ⇑. By induction on

the length of t it follows that there exists o′ such that o
t

=⇒ o′ and o′ = Πi∈0,...no
′′
i

where o′′i = τ.1 or o′′i = (τ.1 + a.(. . .)) for all i. Then, there exists a maximal (divergent)
observer-unsuccessful computation q ‖ o −→ q0 ‖ o′ −→ q1 ‖ o′ −→ . . . −→ qj ‖ o′ −→ . . ..
Consequently, q 6must o, which contradicts the assumption p vI

unc q.
(2) By contradiction. Suppose that there exists s = a1 . . . am such that p ⇓ [s]D, s ∈ str(q)

and p 6 [s]D=⇒. From p 6 [s]D=⇒, either (i) (str(p, [s]D))† does not hold; or (ii) 6 ∃s′ ∈ str(p, [s]D)

such that p
s′

=⇒ . Note that (ii) is impossible: because ε ∈ str(p) for all p and ε ≤D s for
all s and D. Consequently, for all p, s and D we have {t | t ∈ str(p), t ≤D s} 6= ∅ and
str(p, [s]D) 6= ∅. By the definition of str(p, [s]D), s′ ∈ str(p, [s]D) implies s′ ∈ str(p), and

therefore p
s′

=⇒, which contradicts (ii). Then, (i) holds. Consequently,

∃Ij ∈ I.∀t ∈ (str(p, [s]D)).s � Ij 6= t � Ij (3.1)

Then, choose the observer o = Πi∈0,...noi with oi defined as follows

oi = τ.1 + bi1.(τ.1 + . . . (τ.1 + biki .1) . . .) if biki 6= am

oi = τ.1 + bi1.(τ.1 + . . . (τ.1 + biki .0) . . .) if biki = am

with s � Ii = bi1 . . . b
i
ki

.

Since s ∈ str(q), q
s

=⇒ q′. By (1) above, p ⇓ [s]D implies q ⇓ [s]D. Consequently,

q′ ⇓. Then, there is a computation q
s

=⇒ q′ =⇒ q′′ 6−→. Moreover, we can build an

unsuccessful computation of o
s

=⇒ o′′ = Πi∈0,...no
′′
i 6−→ where o′′j = 0 for j ∈ 0, . . . , n and

bjkj = an. By zipping the computations q
s

=⇒ q′′ and o
s

=⇒ o′′, we obtain a maximal

computation of q ‖ o that is observer-unsuccessful. Consequently, q 6must o.

Take a maximal computation of p ‖ o =⇒. By unzipping it, p
t

=⇒ p′ and o
t

=⇒ o′.

By construction of o, o
s

=⇒. By Lemma 3.6, o
r

=⇒ iff r ∈ [s]D. Then, o
t

=⇒ o′ implies
that there exists t′ such that tt′ ∈ [s]D. From p ⇓ [s]D, we have p′ ⇓ and, consequently,
p′ 6−→. Also o ⇓ t holds because o is finite; moreover, o′ 6−→. Hence, p ‖ o =⇒ p′ ‖ o′ is a
finite maximal computation.

By assumption, [s]D ∩ str(p) = ∅ holds (otherwise, (str(p, [s]D))† should hold). There-
fore t 6∈ [s]D. Then, t is a prefix of a string in [s]D, i.e., there exists a and t′′ such that

tt′′a ∈ [s]D and for all p′ if p
t

=⇒ p′ then p′ 6[t
′′a]D
=⇒ . Without lost of generality we assume

a = an (otherwise, the definition of o can be changed accordingly). By construction,

o
t

=⇒ o′ implies o′ = Πi∈0,...no
′
i and o′

[t′′a]D
=⇒ where for any i either (a) o′i = τ.1+b.(. . .) or

(b) o′i = 1. Case (a) is not possible, because we assume o′ 6−→. For case (b), we proceed

by zipping the computations p
t′

=⇒ p′′ 6−→ and o
t′

=⇒ o′ 6−→, which is observer-successful.
Consequently, every maximal computation of p ‖ o is observer-successful and p must o,
which is in contradiction with the assumption p vI

unc q.

Lemma 3.11. If (p after [s]D) 6MUST L for some finite L ⊆ Act, then p
[s]D
=⇒.
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Proof. Suppose p 6 [s]D=⇒. Then (p after [s]D) = ∅ and, by definition, ∅ MUST L for every finite
L ⊆ Act.

Lemma 3.12. If p �I
unc q, s ∈ str(q) and p ⇓ [s]D then p

[s]D
=⇒.

Proof. Assume that p 6 [s]D=⇒. Then, (p after [s]D) = ∅. Hence, (p after [s]D) MUST L for every
finite L ⊆ A. Since p ⇓ [s]D and p �I

unc q, q ⇓ [s]D. By straightforward induction on the

length of the reduction, we can show that q
t

=⇒ q′ implies n(q′) ⊆ n(q) for all t (i.e., the
names n(q′) of q′ are included in the names of q). Moreover, init(q) ⊆ n(q) trivially holds.

Consequently,
⋃
{init(q′) | q [s]D

=⇒ q′} ⊆ n(q). Since, n(q) is finite, we can conclude that the

set
⋃
{init(q′) | q [s]D

=⇒ q′} is finite. Therefore, we can find an action a such that q 6 sa=⇒. Then
(q after [s]D) 6MUST {a} while (p after [s]D) MUST {a}, which contradicts the hypothesis
p �I

unc q.

Theorem 3.13. vI
unc = �I

unc.

Proof.

(⊆) Actually we prove that p 6�I
unc q implies p 6vI

unc q. Let D be the dependency relation
induced by I. Assume that there exists s = a1 . . . an and Ij ∈ I and L ⊆ Ij such that
(1) p ⇓ [s]D and q ⇑ [s]D, or
(2) s ∈ str(q) and ∀t ∈ [s]D.t 6∈ str(p) or
(3) (p after [s]D) MUST L and (q after [s]D) 6MUST L
For each case we show that there exists an observer such that p must o and q 6must o. For
the two first cases, we take the observers as defined in proof of Lemma 3.10. For the third
one, we take o = Πi∈0,...noi with oi defined as follows

oi = τ.1 + b1.(τ.1 + . . . (τ.1 + bk.1) . . .) if i 6= j
oi = τ.1 + b1.(τ.1 + . . . (τ.1 + bk.

∑
a∈L a.1) . . .) if i = j

with s � Ii = b1 . . . bk.
(⊇) We prove p �I

unc q implies p vI
unc q. Actually, the proof follows by showing that p �I

unc q
and q 6must o imply p 6must o. Assume there exists an unsuccessful computation

q ‖ o = q0 ‖ o0
τ−→ . . .

τ−→ qk ‖ ok
τ−→ . . .

Consider the following cases:

(1) The computation is finite, i.e., there exists n such that qn ‖ on 6
τ−→.

By unzipping the computation we have q0
s

=⇒ qn and o0
s

=⇒ on, which is unsuccessful,

i.e., oi 6
X−→ for all 0 ≤ i ≤ n.

Moreover, qn 6MUST init(on). Hence (q after [s]D) 6MUST init(on).

(a) Case p ⇑ [s]D, i.e., ∃t ∈ [s]D and p ⇑ t. By Corollary 3.7 (4), o
s

=⇒ implies o
t

=⇒
also unsuccessful, and hence there is an unsuccessful computation of p ‖ o.

(b) Case p ⇓ [s]D. Note that s ∈ str(q). By Lemma 3.10 (2), ∃t ∈ [s]D : t ∈ str(p).
Hence, (p after [s]D) 6= ∅. Since p �I

unc q, (q after [s]D) 6MUST init(on)
implies (p after [s]D) 6MUST init(on). Therefore, exists some p′ ∈ (p after [s]D)

and p′ 6MUST init(on). Hence, ∃t′ ∈ [s]D.p
t′

=⇒. By Corollary 3.7 (4), o
t
′

=⇒
unsuccessful, and hence there is an unsuccessful computation of p ‖ o.
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(2) The computation is infinite. We consider two cases:
(a) There exist s ∈ str(q) and s ∈ str(o) such that q ⇑ s or o ⇑ s. We proceed by case

analysis.
(i) q ⇑ [s]D: Since p �I

unc q, p ⇑ [s]D. Therefore, ∃t ∈ [s]D such that p ⇑ t.

By Corollary 3.7 (4), o
t

=⇒ unsuccessful, and hence there is an unsuccessful
computation of p ‖ o.

(ii) q ⇓ [s]D (and o ⇑ s): By Lemma 3.12, ∃t ∈ [s]D : t ∈ str(p). By Corol-
lary 3.7 (2), o ⇑ t, and hence there is an unsuccessful computation of p ‖ o.

(b) ∀n.qn ⇓ and on ⇓. For every n, take s ∈ Act∗ such that q
s

=⇒ qn and q ⇓ s
(this is possible because q‖ o =⇒ qn‖ on is unsuccessful and ∀i ≤ n.qi ⇓). By

Lemma 3.10, q
s

=⇒ qn and q ⇓ s implies either (i) p ⇑ [s]D or (ii) p ⇓ [s]D and

p
[s]D
=⇒.

(i) p ⇑ [s]D: ∃t ∈ [s]D such that p ⇑ t. By Corollary 3.7 (4), o
s

=⇒ unsuccessful

implies o
t

=⇒ unsuccessful, and hence there is an unsuccessful computation of
p ‖ o.

(ii) p ⇓ [s]D and p
[s]D
=⇒. Since qn ⇓, there exists qm such that qn =⇒ qm 6−→ and

qm
a−→ qm+1. Consequently, (q after [s]D) 6MUST L for all L such that a 6∈ L.

Since p �I
unc q, then for all L such that a 6∈ L, we have (p after [s]D) 6MUST L.

Moreover, on =⇒ om
a−→ om+1. Therefore, there exists pn ∈ (p after [s]D)

and pn
a

=⇒ pm+1. Hence, for all n there is an unsuccessful computation
p‖ o =⇒ pn‖ on =⇒ pm+1‖ om+1.

In the following we will write LIp,[s]D for the smallest set such that (p after [s]D) MUST L

and L ⊆ I imply LIp,[s]D ⊆ L.

Example 3.14. We take advantage of the alternative characterisation of the uncoordinated
preorder to show that the three processes for the broker in Example 3.1 are equivalent when
considering I = {{req}, {reqF}, {reqH }}. Actually, we will only consider B0 ≈I

unc B1, as the
proofs for B0 ≈I

unc B2 and B1 ≈I
unc B2 are analogous.

Firstly, we have to consider that B0 ⇓ s and B1 ⇓ s for any s because B0 and B1 do
not have infinite computations. The relation between must-sets are described in the two
tables below. The first table shows the sets (B0 after [s]D) and LIB0,[s]D

. Note that [s]D in

the first column will be represented by any string s′ ∈ [s]D. Moreover, we write “−” in the
three last columns whenever LIB0,[s]D

does not exist. The second table does the same for

B1. In the tables, we let B′0 stand for τ.reqF .0 + τ.reqH .0 + τ.reqH .reqF .0 and B′1 stand
for τ.reqF .0 + τ.reqH .0 + τ.reqF .reqH .0.

[s]D B0 after [s]D L
{req}
B0,[s]D

L
{reqH}
B0,[s]D

L
{reqF}
B0,[s]D

ε B0 {req} − −
req {B′0, reqF .0, reqH .0, reqH .reqF .0} − − −
req .reqF {0} − − −
req .reqH {0, reqF .0} − − −
req .reqF .reqH {0} − − −
other ∅ ∅ ∅ ∅



1:14 R. De Nicola and H. Melgratti Vol. 19:1

[s]D B1 after [s]D L
{req}
B0,[s]D

L
{reqH}
B0,[s]D

L
{reqF}
B0,[s]D

ε B1 {req} − −
req {B′1, reqF .0, reqH .0, reqF .reqH .0} − − −
req .reqF {0, reqH } − − −
req .reqH {0} − − −
req .reqF .reqH {0} − − −
other ∅ ∅ ∅ ∅

By inspecting the tables, we can check that for any possible trace [s]D and I ∈ I, it holds
that LIB0,[s]D

= LIB1,[s]D
. Consequently, (B0 after [s]D) MUST L iff (B1 after [s]D) MUST L

and thus we have B0 ≈I
unc B1.

We now present two additional examples that help us understand the discriminating
capability of the uncoordinated preorder and its differences with the classical must preorder.

The first of these examples shows that a process that does not communicate its internal
choices over all parts of its interface is useless in a distributed context.

Example 3.15. Consider the process p = τ.a.0 + τ.b.0 that is intended to be used by two
processes with the following interface: I = {{a}, {b}}. We show that this process is less
useful than 0 in an uncoordinated context, i.e., τ.a.0 + τ.b.0 vI

unc 0. It is immediate to see

that p and 0 strongly converge for any s ∈ Act∗, then the minimal sets L
{a}
p,[s]D

, L
{b}
p,[s]D

, L
{a}
0,[s]D

and L
{b}
0,[s]D

presented in the tables below are sufficient for proving our claim.

[s]D p after [s]D L
{a}
p,[s]D

L
{b}
p,[s]D

ε p, a, b − −
a {0} − −
b {0} − −
other ∅ ∅ ∅

[s]D 0 after [s]D L
{a}
0,[s]D

L
{b}
0,[s]D

ε 0 − −
a ∅ ∅ ∅
b ∅ ∅ ∅
other ∅ ∅ ∅

Note that differently from the classical must preorder, the uncoordinated preorder does
not consider the must-set {a, b} to distinguish p from 0 because this set involves channels in
different parts of the interface. The key point here is that each internal reduction of p is
observed just by one part of the interface: the choice of branch a is only observed by one
process and the choice of b is observed by the other one. Since uncoordinated observers
do not intercommunicate, they can only report success simultaneously if they can do it
independently from the interactions with the tested process, but such observers are exactly
the ones that 0 can pass.

Like in the classical must preorder, we have that 0 6vI
unc τ.a.0 + τ.b.0. This is witnessed

by the observer o = a.0 + τ.1 ‖ 1 that is passed by 0 but not by τ.a.0 + τ.b.0.

The second example shows that the uncoordinated preorder falls somehow short with
respect to the target we set in the introduction of allowing processes to swap actions that
are targeted to different partners.

Example 3.16. Consider the interface I = {{a}, {b}} and the two pairs of processes

• a.b.0 + a.0 + b.0 and b.a.0 + a.0 + b.0.
• a.b.0 and b.a.0.
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By inspecting traces and must-sets in the two tables below, where we use p and q to denote
a.b.0 + a.0 + b.0 and b.a.0 + a.0 + b.0

[s]D p after [s]D L
{a}
p,[s]D

L
{b}
p,[s]D

ε {p} {a} {b}
a {b.0, 0} − −
b {0} − −
ab {0} − −
other ∅ ∅ ∅

[s]D q after [s]D L
{a}
q,[s]D

L
{b}
q,[s]D

ε {p} {a} {b}
a {0} − −
b {a.0, 0} − −
ab {0} − −
other ∅ ∅ ∅

it is easy to see that

a.b.0 + a.0 + b.0 ≈I
unc b.a.0 + a.0 + b.0

However, by using o = a.1 ‖ 1 and o′ = 1 ‖ b.1 as observers, it can be shown that

a.b.0 6vI
unc b.a.0 and b.a.0 6vI

unc a.b.0

Note that o = a.1 ‖ 1 actually interacts with the process under test by using just one
part of the interface and relies on the fact that the remaining part of the interface stays
idle. Thanks to this ability, uncoordinated observers have still a limited power to track some
dependencies among actions on different parts of the interface.

The preorder presented in the next section limits further the discriminating power of
observers and allows us to equate processes a.b.0 and b.a.0.

4. A testing preorder with individualistic observers

In this section we explore a notion of equivalence equating processes that can freely permute
actions over different parts of their interfaces. As for the uncoordinated observers, the
targeted scenario is that of a service with a partitioned interface interacting with two or
more independent processes by using separate sets of ports. In addition, each component
of an observer cannot exploit any knowledge about the design choices made by the other
components, i.e., each of them has a local view of the behaviour of the process that ignores
all actions controlled by the remaining components. Local views are characterised in terms
of a projection operator defined as follows.

Definition 4.1 (Projection). Let V ⊆ N be a set of observable ports. We write p � V for
the process obtained by hiding all actions of p over channels that are not in V . Formally,

p
α−→ p′ α ∈ V ∪ V

p � V
α−→ p′ � V

p
α−→ p′ α 6∈ V ∪ V

p � V
τ−→ p′ � V

Example 4.2. Let p = a.p1 + b.p2 be a process. Note that p
a−→ p1 and p

b−→ p2. Then,
the projection of p over the channel a, i.e., p � {a}, has the following two transitions:

p � {a} a−→ p1 � {a} and p � {a} τ−→ p1 � {a} where the action a of p over the visible channel
a is reflected on the label of the transition of p � {a} while the action over the non-visible
channel b is taken as an internal action.

Definition 4.3 (Individualistic (must) preorder vI
ind). Let I = {Ii}i∈0..n be an interface.

We say p vI
ind q iff for all uncoordinated observer o = Πi∈0..noi, for all i ∈ 0..n, p � Ii must oi

implies q � Ii must oi.
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Note that a.b.0 and b.a.0 cannot be distinguished anymore by the observer o = a.1 ‖ 1

used in the previous section to prove a.b.0 6v{{a},{b}}unc b.a.0 (Example 3.16), because a.b.0 �
{a} must a.1, b.a.0 � {a} must a.1, a.b.0 � {b} must 1 and b.a.0 � {b} must 1. Indeed, later
(Example 4.11) we will see that:

a.b.0 ≈{{a},{b}}ind b.a.0.

4.1. Semantic characterisation. In this section we address the characterisation of the
individualistic preorder in terms of traces. We start by introducing an equivalence relation
over traces that ignores hidden actions.

Definition 4.4 (Filtered traces). Let I ⊆ Act. Two strings s, t ∈ Act∗ are equivalent up-to

I, written s
•≡I t, if and only if s � I = t � I. We write [[s]]I for the equivalence class of s.

Basically, two traces are equivalent up-to I when they coincide after the removal of

hidden actions. For instance, aa
•≡{a} aba

•≡{a} ababbb
•≡{a} . . ..

As for the distributed preorder, we extend the notions of reduction, convergence and
residuals to equivalence classes of filtered traces.

• q [[s]]I
=⇒ q′ if and only if ∃t ∈ [[s]]I such that q

t
=⇒ q′.

• p ⇓ [[s]]I if and only if ∀t ∈ [[s]]I .p ⇓ t.
• (p after [[s]]I) = {p′ | p [[s]]I

=⇒ p′}.
The following auxiliary result establishes properties relating reductions, hiding and filtered
traces, which will be useful in the proof of the correspondence theorem.

Lemma 4.5.

(1) p
s

=⇒ p′ implies p � I
s�I
=⇒ p′ � I.

(2) p � I
s

=⇒ p′ � I implies ∃t ∈ [[s]]I and p
t

=⇒ p′.
(3) p ⇑ [[s]]I implies p � I ⇑ s � I.
(4) (p after [[s]]I) MUST L iff (p � I after s � I) MUST L ∩ I.

Proof. The proof follows by induction on the length of s.

The alternative characterisation for the individualistic preorder is given in terms of
filtered traces.

Definition 4.6. Let p �I
ind q if for every I ∈ I, for every s ∈ I∗, and for all finite L ⊆ I, if

p ⇓ [[s]]I then

(1) q ⇓ [[s]]I
(2) q (p after [[s]]I) MUST L ∪ (Act\I) implies (q after [[s]]I) MUST L ∪ (Act\I)

We would like to draw attention to condition 2 above; it only considers must-sets that always
include all the actions in (Act\I) to avoid the possibility of distinguishing reachable states
because of actions that are not in I. Consider that this condition could be formulated as
follows: for all finite L ⊆ Act,

(p after [[s]]I) MUST L implies ∃L′ such that (q after [[s]]I) MUST L′ and L ∩ I = L′ ∩ I
which makes evident that only the actions from the observable part of the interface are
relevant. We adopted the first formulation because it resembles the original characterisation
of the must preorder.



Vol. 19:1 MULTIPARTY TESTING PREORDERS 1:17

The following lemmata are analogous to those for the uncoordinated preorder and their
proof follows similarly (proof details are in Appendix A).

Lemma 4.7. If p vI
ind q then for all s ∈ Act∗ and I ∈ I, we have that p ⇓ [[s]]I implies

(1) q ⇓ [[s]]I
(2) s ∈ str(q) implies that there exists t ∈ [[s]]I such that t ∈ str(p).

Lemma 4.8. if (p after [[s]]I) 6MUST L for some L ⊆ Act, then ∃t ∈ [[s]]I : t ∈ str(p).

We rely on the following auxiliary results relating the traces of processes in the must
preorders.

Lemma 4.9. If p �I
ind q, s ∈ str(q) and p ⇓ [[s]]I with I ∈ I then t ∈ ([[s]]I ∩ str(p)).

Theorem 4.10. vI
ind = �I

ind.

Proof. The proof follows along the lines of that of Theorem 3.13 (see details in Appendix A).

Example 4.11. Consider the processes p = a.b.0 and q = b.a.0 and the interface I =
{{a}, {b}}. The table below shows the analysis for the part of the interface {a}.

[[s]]{a} p after [[s]]{a} L
{a}
p,[[s]]I

q after [[s]]{a} L
{a}
q,[[s]]I

ε {p} {a} {q, a.0} {a}
a {0, b.0} − {0} −
other ∅ ∅ ∅ ∅

When analysing the sets (p after [[ε]]{a}) = {p} and (q after [[ε]]{a}) = {q, a.0}, we ignore
the fact that q starts with a hidden action b; the only relevant residuals are those performing
a. With a similar analysis we conclude that the condition on must-sets also holds for set
{b}. Hence, a.b.0 ≈I

ind b.a.0 holds.

The following example illustrates also the fact that individualistic observers are unable
to track causal dependencies between choices made in different parts of the interface.

Example 4.12. Let p1 = a.c.0 + b.d.0 and p2 = a.d.0 + b.c.0 be two alternative implemen-
tations for a service with interface I = {{a, b}, {c, d}}. These two processes are distinguished

by the uncoordinated preorder (p1 6≈{{a,b},{c,d}}unc p2) because of the observers o1 = a.1 ‖ c.1
(p1 6v{{a,b},{c,d}}unc p2) and o2 = b.1 ‖ c.1 (p2 6v{{a,b},{c,d}}unc p1).

They are instead equated by the individualistic preorder with respect to I, p1 ≈I
ind p2.

Indeed, if only the part of the interface {a, b} is of interest, we have that p1 and p2 are
equivalent because they exhibit the same interactions over channels a and b. Similarly,
without any a priori knowledge of the choices made for {a, b}, the behaviour observed over
{c, d} can be described by the non-deterministic choice τ.c.0 + τ.d.0, and hence, p1 and p2
are indistinguishable also over {c, d}.

We use the alternative characterisation to prove our claim. As usual, p1 ⇓ s and p2 ⇓ s
for any s. The tables below show coincidence of the must-sets. We would only like to remark
that ac ∈ [[a]]{a,b} and, consequently, p1 after [[a]]{a,b} contains also process 0.
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[[s]]{a,b} p1 after [[s]]{a,b} L
{a,b}
p1,[[s]]I

p2 after [[s]]{a,b} L
{a,b}
p2,[[s]]I

ε p1 {a, b} p2 {a, b}
a {c.0, 0} − {d.0, 0} −
b {d.0, 0} − {c.0, 0} −
other ∅ ∅ ∅ ∅

[[s]]{c,d} p1 after [[s]]{a,b} L
{c,d}
p1,[[s]]I

p2 after [[s]]{a,b} L
{c,d}
p2,[[s]]I

ε p1 {c, d} p2 {c, d}
c {0} − {0} −
d {0} − {0} −
other ∅ ∅ ∅ ∅

5. Relation between must, uncoordinated and individualistic preorders

In this section, we formally study the relationships between the classical must preorder
and the two preorders we have introduced. We start by showing that a refinement of an
interface induces a coarser preorder, e.g., splitting the observation among more uncoordinated
observers decreases the discriminating power of the observers. We say that an interface I′ is
a refinement of another interface I when the partition I′ is finer than the partition I.

Lemma 5.1. Let I be an interface and I′ a refinement of I. Then, p vI
unc q implies p vI′

unc q.

Proof. The proof follows by showing that p �I
unc q implies p �I′

unc q. Let D and D′ be the
dependency relations induced respectively by I and I′. Since I′ is a refinement of I, D′ ⊆ D
and therefore [s]D ⊆ [s]D′ for all s. Assume p ⇓ [s]D′ for s ∈ Act∗. Then,

• p ⇓ t for all t ∈ [s]D′ . Note that [t]D′ = [s]D′ because t ∈ [s]D′ . Consequently, p ⇓ [t]D
because [t]D ⊆ [t]D′ = [s]D′ . Since p �I

unc q, we know that q ⇓ [t]D, which implies q ⇓ t.
Therefore, q ⇓ [s]D′ .
• Assume L ⊆ I ′, I ′ ∈ I′ and (p after [s]D′) MUST L. Then, (p after t) MUST L for all
t ∈ [s]D′ . Therefore, (p after [t]D) MUST L because [t]D ⊆ [t]D′ = [s]D′ . Since I′ is a
refinement of I, there is some I ∈ I such that I ′ ⊆ I and L ⊆ I and I ∈ I. Consequently,
p �I

unc q implies (q after [t]D) MUST L and, hence, (q after t) MUST L for all t ∈ [s]D′ .
Therefore, (q after [s]D′) MUST L.

This result allows us to conclude that the uncoordinated preorder is coarser than the classical
must testing preorder. It suffices to note that the preorder associated to the maximal element
of the partition lattice, i.e., the trivial partition I = {Act}, corresponds to vmust.

Lemma 5.2. vmust = v{Act}unc .

Proof. (⊆) We show that p �must q implies p �{Act}unc q for all p and q. Assume p ⇓ [s]D for
s ∈ Act∗. Then,

• p ⇓ t for all t ∈ [s]D. Since p �must q, we know that p ⇓ t implies q ⇓ t for all t ∈ [s]D.
Consequently, q ⇓ [s]D.
• Assume (p after [s]D) MUST L for any L ⊆ Act. Then, (p after t) MUST L for all t ∈ [s]D.

Since p �must q, (q after t) MUST L for all t ∈ [s]D. Hence, (q after [s]D) MUST L.
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(⊇) We show that p �{Act}unc q implies p �must q for all p and q. First note that the interface
{Act} induces a total dependency relation D on Act. This implies [s]D = {s} for all s ∈ Act∗.
Assume p ⇓ s for s ∈ Act∗. Then,

• p ⇓ [s]D. From p �{Act}unc q, we know that p ⇓ [s]D implies q ⇓ [s]D. Consequently, q ⇓ s.
• Assume that (p after [s]D) MUST L holds for a finite L ⊆ Act. Since p �{Act}unc q,

(q after [s]D) MUST L. Hence, (q after s) MUST L.

Corollary 5.3. Let I be an interface. Then, p vmust q implies p vI
unc q.

The converse of Lemma 5.1 and Corollary 5.3 do not hold. Consider the processes
p = a.b.0 + a.0 + b.0 and q = b.a.0 + a.0 + b.0. It has been shown, in Example 3.16, that

we have p v{{a},{b}}unc q. Nonetheless, it is easy to check that p 6vmust q (i.e., p v{Act}unc q) by
using o = b.(τ.1 + a.0) as observer.

We also have that the individualistic preorder is coarser than the uncoordinated one.

Proposition 5.4. Let I be an interface. Then, p vI
unc q implies p vI

ind q.

Proof. Let D be the dependency relation induced by I. We first note that [t]D ⊆ [[s]]I for
all t ∈ [[s]]I and I ∈ I because every two strings in the same Mazurkiewicz trace have the
same symbols and symbols in the same part of the interface do not commute. Then, assume
p ⇓ [[s]]I for s ∈ Act∗. Consequently,

• p ⇓ t for all t ∈ [[s]]I . Since [[t]]I = [[s]]I and [t]D ⊆ [[s]]I , p ⇓ t′ for all t′ ∈ [t]D and
t ∈ [[s]]I . Moreover, p �I

unc q implies q ⇓ t′ for all t′ ∈ [t]D and t ∈ [[s]]I . Consequently,
q ⇓ [[s]]I .
• Assume (p after [[s]]I) MUST L ∪ (Act\I) with L ⊆ I. Then, (p � I after t � I) MUST L,

for all t ∈ [[s]]I . Then p �I
unc q implies (q � I after t′ � I) MUST L for all t′ ∈ [t]D and

t ∈ [[s]]I .

The converse does not hold, i.e., p vI
ind q does not imply q vI

unc p. Indeed, we have that

a.b.0 v{{a},{b}}ind b.a.0 (Example 4.11) but a.b.0 6v{{a},{b}}unc b.a.0 (Example 3.16).

6. Multiparty testing at work

In this section we show how to use the proposed preorders for analysing a larger scenario
involving a replicated data store with alternative policies for consistency. In order to
support the task of checking relations, we introduce a prototype implementation of the
alternative characterisations provided in the paper limited to the fragment of the calculus
with finite processes. We resorted to this limitation because the proposed alternative
characterisations use quantification over all possible traces of a process. The development of
decision procedures for the infinite case (e.g., along the lines of [BF18]) is left to future work.

6.1. Implementation in Prolog. To provide the Prolog implementation of the new testing
preorders, we rely on their alternative characterisations in term of traces. The actual
implementation is restricted to the finite fragment of our specification language (Sequential
ccs) and is available from https://github.com/hmelgra/Multiparty-preorders.

Processes are represented as functional terms built-up from the constants 0 and 1, the
unary operator ~ (output actions), and the binary functions * (prefix) and + (choice). The
operational semantics of finite ccs processes is given by the ternary predicate red(P,L,Q),

https://github.com/hmelgra/Multiparty-preorders
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which is defined in one-to-one correspondence with the inference rules for finite processes
(i.e., those rules that do not involve recursive processes) in Definition 2.1. The corresponding
Prolog predicates are the following.

red(1, tick, 0).

red(L * P, L, P).

red(P + _, L, P1) :- red(P, L, P1).

red(_ + Q, L, Q1) :- red(Q, L, Q1).

Now, by building on the predicate red(_,_,_), we inductively define the ternary (weak

reduction) relation P
S

=⇒ Q as the predicate wred(P, S, Q) below.

1 wred(P, [], P).

2 wred(P, [L|S], Q) :- red(P, L, R), L\=tau, wred(R, S, Q).

3 wred(P, S, Q) :- red(P, tau, R), wred(R, S, Q).

The rules above respectively stand for P =⇒ P (line 1); P
LS

=⇒ Q if L 6= τ and P
L−→ R

and R
S

=⇒ Q (line 2); and P
S

=⇒ Q if P
τ−→ R and R

S
=⇒ Q (line 3).

Then, the set of traces from P , S = str(P ), is defined as follows.

1 tr(P, T) :- wred(P, T, _).

2 str(P, S) :- setof(T, tr(P,T), S).

The set containing the residuals of a process P after the execution of a sequence of
actions T is defined by the following two rules

1 after(P, T, []) :- not(wred(P, T, _)), !.

2 after(P, T, Qs) :- setof(Q, wred(P,T,Q), Qs).

The first rule states that P after T = ∅ when P does not have T as one of its traces, while
the second one handles the case in which T is a trace of P . The predicate after(_,_,_)

is implemented with two rules because setof(Q, wred(P,T,Q), Qs) fails when the goal
wred(P,T,Q) does not have any solution.

The predicate P MUST L of Definition 2.4 is inductively implemented by the following
rules.

1 must([], _).

2 must([P|Ps], L) :-

3 member(A, L), wred(P, [A], _), !, must(Ps, L).

Line 1 stands for the base case, i.e., ∅ MUST L for any L. Differently, Line 2 states
that for a non empty set of processes {P} ∪ Ps, it should be the case that there exists some

action A ∈ L such that P
A

=⇒ and Ps MUST L.
We have now all the ingredients needed for the definition of �must. Our implementation

relies on refutation, i.e., we indirectly show p �must q by falsifying p 6�must q. From
Definition 3.9, we deduce that p 6�I

unc q if there exist s ∈ Act∗, I ∈ I, a finite L ⊆ I, such
that p ⇓ [s]D, and either

• q ⇑ [s]D, or
• (p after [s]D) MUST L and (q after [s]D) 6MUST L.
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Since we are considering the finite fragment of the calculus, the convergence predicate ⇓s
trivially holds for finite processes. Consequently, for finite processes we have, p 6�I

unc q
if there exist s ∈ Act∗, I ∈ I, and a finite L ⊆ I, such that (p after [s]D) MUST L
and (q after [s]D) 6MUST L. Moreover, we take advantage of the refutation procedure
to obtain witnesses that explain why two particular processes are not in �must relation.
Hence, we implement 6�must as the quaternary predicate notleqmust(P,Q,S,L) meaning
that P 6�must Q because (P after S) MUST L but (Q after S) 6MUST L.

1 notleqmust(P, Q, S, L):-

2 str(P+Q, Ss), member(S, Ss),

3 after(P, S, Ps), after(Q, S, Qs),

4 n(P+Q, As), subseteq(L, As),

5 must(Ps, L), not(must(Qs, L)).

6

7 leqmust(P,Q) :- not(notleqmust(P,Q,_,_)).

Line 2 states that we only consider the set Ss of traces that are either traces of P or Q

and disregard any other trace because the residuals for both P and Q are empty in those
cases, and hence uninteresting. When defining must-sets, it is useless to consider actions
that are not in the alphabet of the processes1. Therefore, line 4 states that we only consider
subsets L of the names occurring in either P or Q . Then, in order to show that P and Q are
not in �must relation, we search for a set L that is a must-set of the residuals of P after S

(i.e., must(Ps, L)) but not of the residuals of Q after S (line 5). Finally, the predicate �must

is just defined as the negation of 6�must (line 7).
As an example of use of the notleqmust(_,_,_,_) predicate, we can use it to show

that neither 0 vmust τ.a.0 + τ.b.0 nor τ.a.0 + τ.b.0 vmust 0 hold.
In fact, the following query

1 ?- notleqmust(0, tau * a * 0 + tau * b * 0,S,L).

has several solutions, among which we have S = [a], L = [].
Similarly,

1 ?- notleqmust(tau * a * 0 + tau * b * 0, 0, S,L).

has S = [], L = [a, b] among its solutions.
The implementation for the uncoordinated and individualistic preorders follows analo-

gously. First, we generalise the definition of residuals to consider a set of traces instead of
just a trace. This is done just by collecting all the residuals of the process for each trace in
the set. We use the ternary predicate afterC(_,_,_) defined as follows.

1 afterC(_,[],[]).

2 afterC(P,[X|Xs],Ps):- after(P,X,P1s), afterC(P,Xs,P2s),

3 union(P1s,P2s,Ps).

In addition, we use two auxiliary predicates: independence(I,Ind), which computes
the independence relation Ind induced by an interface I; and mazurkiewicz(Ind,S,CT),

1The definition of predicate n(P,As), which computes the alphabet of P, has been omitted because it is
straightforward.
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which takes an independence relation Ind, a set of traces S belonging to the same equivalence
class, and generates the complete set of traces CT in that equivalence class. We omit here
their definition because are straightforward and not interesting. We first define the relation
maximalPref(_,_,_,_) for the set of maximal reductions MR of a process P within the
equivalence class of T (for the interface I).

1 maximalPref(P,T,I,MR) :- independence(I,Ind), mazurkiewicz(Ind,[T],CT),

2 str(P,SP), prefs(SP,CT,PSP), maximal(PSP,PSP,MR),!.

We compute the independence relation Ind induced by the interface I and the Mazurkiewicz
class CT of T. Then, we select the maximal elements MR from the set of reductions SP of P
for the class CT (the omitted implementations of prefs(_,_,_) and maximal(_,_,_) are
uninteresting). Then, the actual set of strings for Mazurkiewicz trace is the set of maximal
prefixes, if they jointly-complete the trace (i.e., the omitted predicate dagger(_,_,_));
otherwise is empty.

1 strClass(P,T,I,MR):- maximalPref(P,T,I,MR), dagger(MR,T,I).

2 strClass(P,T,I,[]):- maximalPref(P,T,I,MR), not(dagger(MR,T,I)).

As for the classical must preorder, we implement �I
unc in terms of 6�I

unc, which is defined
by the predicate notlequnc(P,Q,I,T,L), in which the additional parameter I stands for
the interface. Its definition is below.

1 notlequnc(P,Q,I,T,L):-

2 str(P+Q,Ts), !, member(T,Ts),

3 strClass(P,T,I,CTP), strClass(Q,T,I,CTQ),

4 afterC(P,CTP,Ps), afterC(Q,CTQ,Qs),

5 member(PI, I), subseteq(L, PI),

6 must(Ps, L), not(must(Qs,L)).

7

8 lequnc(P,Q,I) :- not(notlequnc(P,Q,I,_,_)).

The differences with respect to the definition of notlequnc(_,_,_,_) are the following:

• we compute the set of strings with respect to an equivalence class, i.e., CTP and CTQ (line
3);
• residuals are obtained for each equivalence class of a trace (line 4) (instead of just a string);
• must-sets are built with actions in just one part of the interface (line 5).

Then, we can check, e.g., that τ.a.0 + τ.b.0 vI
unc 0 for I = {{a}, {b}} by executing the query

1 ?- notlequnc(tau * a * 0 + tau * b * 0,0,[[a],[b]],T,L).

which does not have any solutions.
Also, we can test that a.b 6vI

unc b.a for I = {{a}, {b}}, because the query

1 ?- notlequnc(b* a * 0 ,a * b * 0,[[a],[b]], T, L).

has several solutions, among which we have T = [], L = [b].
The implementation of the individualistic preorder consists in the definition of an

analogous predicate notleqind(P,Q,I,T,L), which considers the equivalence classes of
filtered traces instead of the Mazurkiewicz ones. It is defined as follows.
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1 notleqind(P,Q,I,T,L1):-

2 str(P+Q,Ts), member(T,Ts), member(PI,I),

3 filtered(T,PI,Ts,CT), afterC(P,CT,P1), afterC(Q,CT,Q1),

4 complement(I, PI, C), subseteq(L1, PI), append(L1,C,L),

5 must(P1, L), not(must(Q1,L)).

6

7 leqind(P,Q,I) :- not(notlequnc(P,Q,I,_,_)).

In this case the variable CT in line 3 stands for the (relevant part of the) equivalence class
of the trace T. Since the equivalence classes for the filtered case are all infinite and, hence,
cannot be computed completely, the predicate filtered(T,PI,Ts,CT) simply generates the
traces in the equivalence class of T that are also traces of at least one of the two processes
under comparison (note that the residuals are empty for both processes in the remaining
cases, and hence irrelevant). The definition of filtered(T,PI,Ts,CT) takes a part of the
interface PI and a set of traces Ts, and returns CT which contains the set of traces in Ts whose
projection over PI coincides with the projection of T. Note that Ts in line 3 corresponds
to the traces in either P or Q (line 2). The remaining difference concerns to the generation
of must-sets (line 4). In this case, each candidate must-set L contains a subset L1 of the
part of the interface under analysis PI and the set C containing all actions in the interface I

that are not in PI (this set is computed by the predicate complement(I, PI, C), whose
definition has been omitted).

We can use this predicate to check, e.g., that a.b.0 vI
ind b.a.0 for I = {{a}, {b}} by

executing the query

1 ?- notleqind( a * b * 0, b * a * 0, [[a],[b]], T,L).

which does not have any solution.
Also, we may check that a.b.0 vI

ind b.a.0 does not hold when I = {{a, b}} because the
query

1 ?- notleqind( a * b * 0, b * a * 0, [[a,b]], T,L).

has several solutions, e.g., T = [], L = [a].
We now illustrate the use of the introduced preorders and of our prototype implementa-

tion in a larger scenario.

6.2. A case study. Distributed, non-relational databases such as Dynamo [DHJ+07] and
Cassandra [LM10] provide highly available storage by replicating data and relaxing consis-
tency guarantees. Such databases store key-value pairs that can be accessed by using two
operations: get to retrieve the value associated with a key, and put to store the value of a
particular key. A client issuing an operation interacts with the closest server, which plays
the role of a coordinator and mediates between the client and the replicas to complete the
client request. Each client request is associated with a consistency level, which specifies the
degree of consistency required over data. For a put operation, the consistency level states
the number of replicas that must be written before sending an acknowledgement to the client.
Similarly, the consistency level of a get operation specifies the number of replicas that must
reply to the read request before returning the data to the client. Cassandra provides several
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consistency levels; for instance, an operation may request to be performed over just ONE

or TWO replicas, or over the majority of the replicas (i.e., QUORUM) or over ALL the replicas.
Consequently, depending on the consistency level required by the client, the coordinator
chooses the replicas to contact.

We will now describe the behaviour of a node acting as coordinator in a configuration that
involves two additional replicas. Then we will introduce alternative policies the coordinator
might want to use when reacting to users request and will discuss their relationships.

For simplicity reasons, we just illustrate the protocol for processing the operation get

and abstract away from the values exchanged during the communication (the put operation
is analogous). The actual protocol for handling a get is described below as a CCS process.

Coord
def
= get.(τ.err.0 + τ.ret.0 + τ.Query1

+τ.Query2 + τ.Query1,2 + τ.Query2,1)

Queryi
def
= readi.(τ.err.0 + reti.(τ.err.0 + τ.ret.0))

Queryi,j
def
= readi.readj .(τ.err.0 + Ansi,j + Ansj,i)

Ansi,j
def
= reti.(τ.err.0 + τ.ret.0 + retj .(τ.ret.0 + τ.err.0))

As stated in Coord, the coordinator after receiving the request get internally decides to
either:

• reply to the client with the error message err, e.g., when the available nodes are not
enough to guarantee the requested consistency level; or
• return the requested information by using just local information (message ret); or
• retrieve information by contacting just one of the additional replicas following the protocol

defined by Queryi; or
• retrieve information from both replicas, following the protocol defined by Queryi,j .

The protocol followed by the coordinator when contacting replica i is modelled by process
Queryi: The coordinator sends a read request over the channel readi and awaits an answer
on channel reti, however it may internally decide not to wait for the answer from the replica
and send an error to the client (e.g., in a timeout expires). When the coordinator receives
the response from the replica, it may return the requested information to the client or signal
an error (e.g., when the consistency level cannot be satisfied by the current state of the
replicas).

The protocol followed by the coordinator when contacting both replicas is modelled by
process Queryi,j : When awaiting for their responses, the coordinator may internally decide
to reply to the client before or after receiving any of the two answers.

Any equation name
def
= proc above can be defined in Prolog by using the predicate

proc(name, proc) as shown below.

1 proc(coord, get * (tau * ~err * 0 + tau * ~ret * 0

2 + tau * Query1 + tau * Query2

3 + tau * Query12 + tau * Query21))

4 :- proc(query(1), Query1), proc(query(2), Query2),

5 proc(query(1,2), Query12), proc(query(2,1), Query21).

6

7

8 proc(query(I), ~read(I) * (tau * ~err * 0
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9 + ret(I) * (tau * ~err * 0 + tau * ~ret * 0))).

10

11 proc(query(I,J), ~read(I) * ~read(J) * (tau * ~err * 0 + AnsIJ + AnsJI))

12 :- proc(ans(I,J),AnsIJ), proc(ans(J,I),AnsJI).

13

14 proc(ans(I,J), ret(I) * (tau * ~ret * 0 + tau * ~err * 0

15 + ret(J) * (tau * ~ret * 0 + tau * ~err * 0))).

A possible implementation of Coord may only provide the part of the protocol that
always contact the two additional replicas regardless of the information and consistency
level requested by the client. Such implementation can be described as follows,

Coord1
def
= get.Query1,2

where Query1,2 is as before. This defining equation is implemented in Prolog as follows,

1 proc(coord1, get * Query12) :- proc(query(1,2), Query12).

We can check that Coord vmust Coord1 by performing the query

1 ?:- proc(coord, Coord), proc(coord1,Coord1), leqmust(Coord,Coord1).

An alternative implementation of Coord may decide to communicate an error to the
client but still accept responses from the replicas after this interaction. This feature allows
the coordinator to update its local state with information that can be used when answering
future requests. Such implementation can be described as follows:

Coord2
def
= get.read1.read2.(τ.err.ret1.ret2.0 + Wait1,2 + Wait2,1)

Waiti,j
def
= reti.(τ.ret.retj .0 + τ.err.retj .0 + retj .(τ.ret.0 + τ.err.0))

Note that Coord2 accepts responses from the replicas even after it has replied to the client.
As for Coord, the definition of Coord2 in Prolog is straightforward (and omitted here). When
considering the classical must testing preorder, it holds that Coord 6vmust Coord2. However,
as far as the behaviour of the client and the replicas is concerned, the implementation of
Coord2 is harmless. In fact, we can prove that Coord vI

unc Coord2 when

I = {{get, ret, err}, {get, read1, ret1}, {get, read2, ret2}}
For convenience, when querying the program we add the following definition rule for

the interface.

1 int([[get,~ret,~err], [~read(1),ret(1)],[~read(2),ret(2)]]).

and then query the program as follows:

1 ?- proc(coord, C), proc(coord2,C2), int(I), notlequnc(C,C2,I,_,_).

The query above has no solutions, and hence Coord vI
unc Coord2. Similarly, it can

be proved that Coord1 vI
unc Coord2. On the contrary, it can be checked the neither

Coord2 vI
unc Coord nor Coord2 vI

unc Coord1. For instance, the query

1 ?- proc(coord2,C2), proc(coord1, C1), int(I), notlequnc(C2,C1,I,S,L).
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has several solutions, e.g.,:

• S = [get, ~read(1), ~read(2), ret(1), ~err], L = [ret(2)],
• S = [get, ~read(1), ~read(2), ret(2), ~err], L = [ret(1)],
• S = [get, ~read(1), ~read(2), ~err], L = [ret(1)],
• S = [get, ~read(1), ~read(2), ~err, ret(1)],L = [ret(2)].

All of them show that Coord2 is able to accept an answer from a replica even after signaling
an error to the client, while Coord1 is not. Consequently, a replica may distinguish the
behaviours of the different implementations: when interacting with Coord1, a replica i may
discover that the coordinator has sent the message err to the client because the interaction
reti cannot not take place.

We now consider a variant of Coord2 that chooses a different order for contacting replicas,
defined as follows:

Coord3
def
= get.read2.read1.(τ.err.ret1.ret2.0 + Wait1,2 + Wait2,1)

where Waiti,j is defined as before. The only difference between Coord2 and Coord3 is the
order in which read1 and read2 are executed.

We have that Coord2 and Coord3 are still distinguishable in the uncoordinated preorder.
For instance, the query

1 ?- proc(coord2, C2), proc(coord3,C3), int(I), notlequnc(C2,C3,I,S,L).

has among it solutions the following one:

1 S = [get], L = [~read(1)]

showing that Coord2 6vI
unc Coord3. The test associated with the above witness is built by

preventing the interaction with the replica 2 (i.e., when the communication over read2 is not
enabled). However, if the interaction with the replicas is guaranteed, both implementations
should be deemed as indistinguishable. In fact, Coord2 and Coord3 are indistinguishable
in the individualistic preorder. We remark, however, that Coord1 is still not equivalent to
either Coord2 or Coord3. For instance, the pair

1 S = [get, ~read(1)], L = [~ret(1)]

witnesses the fact that Coord3 6vI
ind Coord1. In fact, while Coord3 ensures that it will always

receive the reply from the replica 1 after sending the request read1. This is not the case for
Coord1, which may refuse to communicate over read1, e.g., after an internal timeout.

7. Conclusions and related work

In this paper we have explored different relaxations of the must testing preorder tailored
to define new behavioural relations that, in the framework of Service Oriented Computing,
are better suited to study compliance between contracts exposed by clients and servers
interacting via synchronous binary communication primitives.

In particular, we have considered two different scenarios in which contexts of a service
are represented by processes with distributed control. The first variant, that we called
uncoordinated preorder, corresponds to multiparty contexts without runtime communication
between peers but with the possibility of one peer to block another if it does not perform the
expected action. Indeed, the observations at the basis of our experiments are designed with
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the assumption that the users of a service interact only via dedicated ports but might be
influenced by the fact that other partners do not perform the expected actions. The second
preorder we introduced is called individualistic preorder. It accounts for partners that are
completely independent from the behaviour of the other ones. Indeed, from a viewpoint of a
client, actions by other clients are considered unobservable.

We have shown that the discriminating power of the induced equivalences decreases as
observers become weaker; and thus that the individualistic preorder for a given interface
is coarser than the uncoordinated preorder for the same interface, which in turn is coarser
than the classical testing preorder. As future work we plan to consider different “real life”
scenarios and to assess the impact of the different assumptions at the basis of the new
preorders and the identifications/orderings they induce. We plan also to perform further
studies to get a fuller account, possibly via axiomatisations, of their discriminating power.
In the near future, we will also consider the impact of our testing framework on calculi based
on asynchronous interactions.

Several variants of the must testing preorder, contract compliance and sub-contract
relation have been developed in the literature to deal with different aspects of services
compositions, such as buffered asynchronous communication [BZ08, Pad10, MYH09], fair-
ness [Pad11], peer-interaction [BH13]. We have however to remark that these approaches
deal with aspects that are somehow orthogonal to the discriminating power of the dis-
tributed tests analysed in this work. Our preorders have some similarities with those
relying on buffered communications in that both aim at guaranteeing that actions performed
by independent peers can be reordered, but we rely on synchronous communication and,
hence, message reordering is not obtained by swapping buffered messages but by relying
on more generous observers. As mentioned above, we have left the study of distributed
tests under asynchronous communication as a future work. However, we would like to
remark that, even the uncoordinated and the individualistic preorders are different from
those in [BZ08, Pad10, MYH09] that permit explicit action reordering. The paradigmatic

example is the equivalence a.c + b.d ≈{a,b},{c,d}ind a.d + b.c, which does not hold for any of
the preorders with buffered communication. The main reason is that, even in presence of
buffered communication, the causality, e.g., between a and c is always observed.
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Appendix A. Proof Details of results in Section 4

In this section we provide the detailed proofs of results in Section 4.

Lemma 4.7. If p vI
ind q then for all s ∈ Act∗ and I ∈ I, we have that p ⇓ [[s]]I implies

(1) q ⇓ [[s]]I
(2) s ∈ str(q) implies that there exists t ∈ [[s]]I such that t ∈ str(p).

Proof.

(1) By contradiction. Suppose there exists s = a1 . . . an such that p ⇓ [[s]]I and q ⇑ [[s]]I .
Then, take the observer oi defined as follows

oi = τ.1 + bi1.(τ.1 + . . . (τ.1 + biki .τ.1) . . .)

with si = s � I = bi1 . . . b
i
ki

. Then, p � I must oi and q � I 6must oi.
Note that oi ⇓. Since p ⇓ [[si]]I , every maximal computation of (p � I)‖oi does not

diverge. For each maximal computation (p � I)‖oi =⇒ (p′ � I)‖o′i 6−→ we proceed by

unzipping the computation to conclude that oi
t

=⇒ o′i 6−→ for some t. It can be shown

by straightforward induction on the length of the reduction that oi
t

=⇒ o′i 6−→ implies

oi
t

=⇒ 1
X−→ 0 = o′i. Consequently, each maximal computation of (p � I)‖oi is successful

and p must oi.

Since q ⇑ [[si]]I there exists t ∈ [[si]]I such that t = t1t2 and q
t1=⇒ q′ and q′ ⇑.

As before, we can conclude that oi
t1�I
=⇒ o′i

t2�I
=⇒. It can be shown by induction on the

length of t1 that there exists an unsuccessful computation oi
t1�I
=⇒ o′i such that either

o′′i = τ.1 or o′′i = (τ.1 + a. . . .). Then, there exists a maximal (divergent) unsuccessful
computation (q � I)‖oi =⇒ (q′ � I)‖o′′i −→ (q′′ � I)‖o′′i −→ . . .. Consequently, q 6must o
and this contradicts the assumption p vI

ind q.
(2) By contradiction. Suppose there exists s = a1 . . . an such that p ⇓ [[s]]I , s ∈ str(q) and

for all t ∈ [[s]]I , t 6∈ str(p). Then, choose oi defined as follows

oi = τ.1 + bi1.(τ.1 + . . . (τ.1 + biki .0) . . .)
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with si = s � I = bi1 . . . b
i
ki

.

Note that (q � I) 6must oi because there is a maximal unsuccessful computation
of (q � I)‖oi. Since t ∈ [[s]]I , t � I = t′biki . Without lost of generality, we assume

t = t′′biki t 6∈ str(p). Then, either (i) (p � I)
t′

=⇒6
biki−−→ or (ii) (p � I) 6 t

′
=⇒. Case (i) follows

immediately, because oi
t′

=⇒ o′i 6−→ implies oi
t′

=⇒ 1
X−→ 0 = o′. Hence, (p � I)must oi,

which is in contradiction with the assumption that p vI
ind q. Case (ii) follows by noting

that (p � I) 6 t
′

=⇒ implies that there exists t1, t2 with t2 6= ε such that p
t1=⇒6 t2=⇒. Moreover,

if oi
t1=⇒ o′i 6−→ implies oi

t2=⇒ 1
X−→ 0 = o′i. Consequently, every maximal computation of

(p � I)‖oi is successful and (p � I) 6must oi, which is in contradiction with the assumption
p vI

unc q.

Lemma 4.8. if (p after [[s]]I) 6MUST L for some L ⊆ Act, then ∃t ∈ [[s]]I : t ∈ str(p).

Proof. Suppose ∀t ∈ [[s]]I , t 6∈ str(p). Then (p after [[s]]I) = ∅ and, by definition, ∅ MUST L
for every finite L ⊆ Act.

Lemma 4.9. If p �I
ind q, s ∈ str(q) and p ⇓ [[s]]I with I ∈ I then t ∈ ([[s]]I ∩ str(p)).

Proof. Assume ∀t ∈ [[s]]I : t 6∈ str(p). By Lemma 4.8, (p after [[s]]I) MUST L for every
finite L ⊆ Act. By straightforward induction on the length of the reduction, we can

show that p
t

=⇒ q implies n(q) ⊆ n(p). Analogously, we can show that init(q) ⊆ n(p).

Consequently,
⋃
{init(q′) | q [[s]]I

=⇒ q′} ⊆ n(p). Since, n(p) is finite, we can conclude that

the set
⋃
{init(q′) | q [[s]]I

=⇒ q′} is finite. Therefore, we can find an action a such that for all

t ∈ [[s]]I we have q 6 ta=⇒. Then (q after [[s]]I) 6MUST {a} while (p after [[s]]I) MUST {a},
which contradicts the hypothesis p �I

unc q.

Theorem 4.10. vI
ind = �I

ind.

Proof.

(⊆) Actually we prove that p 6�Iind q implies p 6vIind q. Assume that there exists s = a1 . . . an
and L ⊆ I such that
(1) p ⇓ [[s]]I and q ⇑ [[s]]I , or
(2) s ∈ str(q) and ∀t ∈ [[s]]I .t 6∈ str(p) or
(3) (p after [[s]]I) MUST L ∪ (Act\I) and (q after [[s]]I) 6MUST L ∪ (Act\I)
For each case we show that there exists an observer such that p � I must o and q � I 6must o.
For the two first cases, we take the observers as defined in proof of Lemma 4.7. For the
third one, define

o = τ.1 + bi1.(τ.1 + . . . (τ.1 + biki .
∑
a∈L

a.1) . . .)

with s � I = bi1 . . . b
i
ki

.

(⊇) We prove p �Iind q implies p vIind q. Actually, the proof follows by showing that p �Iind q
and q � I 6must o imply p � I 6must o. Assume there exists an unsuccessful computation

q � I ‖ o = q0 � I ‖ o0
τ−→ . . .

τ−→ qk � I ‖ ok
τ−→ . . .

Consider the following cases:
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(1) The computation is finite, i.e., there exists n such that qn � I ‖ on 6
τ−→ and

qi � I ⇓ and oi ⇓ for i ≤ n. By unzipping the computation, there exists s such

that q0 � I
s

=⇒ qn � I and o0
s

=⇒ on unsuccessful. Note that n(s) ⊆ I and hence
s � I = s Moreover, qn � I 6MUST init(on) and, hence (q � I after s) 6MUST init(on).
By Lemma 4.5 (4), we have that (q after [[s]]I) 6MUST init(on).
(a) Case p ⇑ [[s]]I . By Lemma 4.5 (3), p � I ⇑ s. Consequently, there is an

unsuccessful computation of p � I ‖ o.
(b) Case p ⇓ [[s]]I . Note that s ∈ str(q � I). By Lemma 4.7 (2), therefore, ∃t ∈ [[s]]I

and t ∈ str(p). Hence, (p after [[s]]I) 6= ∅. Moreover, from p �Iind q we conclude
that (q after [[s]]I) 6MUST init(o) implies (p after [[s]]I) 6MUST init(on). Therefore,

exists some p′ ∈ (p after [[s]]I) such that p′ 6MUST init(on), and p � I
s

=⇒ p′ � I
is unsuccessful. Hence, there is an unsuccessful computation of p � I ‖ o.

(2) The computation is infinite. We consider two cases:
(a) There exists s ∈ str(q � I) and s ∈ str(o) such that q � I ⇑ s or o ⇑ s. Note that

n(s) ⊆ I and hence s � I = s. We proceed by case analysis.
– q � I ⇑ s: By Lemma 4.5 (3), q ⇑ [[s]]I . Therefore p ⇑ [[s]]I because p �I

unc q.
By Lemma 4.5 (3), p � I ⇑ s. Therefore, there is an unsuccessful computation
of p � I ‖ o.

– q � I ⇓ s (and o ⇑ s): Therefore q ⇓ [[s]]I by Lemma 4.5 (3). Therefore p ⇓ [[s]]I

because p �I
unc q. By Lemma 4.9, ∃t ∈ [[s]]I : t ∈ str(p), hence p

t
=⇒ p′. By

Lemma 4.5 (1) p � I
t�I

=⇒ p′ � I. Note that t � I = s. Then, p � I
s

=⇒ p′ � I.

Hence, the computation obtained by zipping p � I
s

=⇒ p′ � I and o
s

=⇒ o′ is
unsuccessful.

(b) ∀n.(qn � I) ⇓ and on ⇓. Take s ∈ Act∗ such that q
s

=⇒ qn and q � I ⇓ s (this is
possible because q � I ‖o =⇒ qn � I ‖on is unsuccessful and ∀i ≤ n.(qi � I) ⇓).

By Lemma 4.5 (1), (q � I) ⇓ s implies q � I
s�I
=⇒ q′ � I.

By Lemma 3.9, q
s

=⇒ qn and q ⇓ s implies either (i) p ⇑ [[s]]I or (ii) p ⇓ [[s]]I and

p
[[s]]I
=⇒.

(i) p ⇑ [[s]]I : ∃t ∈ [[s]]I such that p ⇑ t. By Corollary 3.7 (4), o
s

=⇒ unsuccessful

implies o
t

=⇒ unsuccessful, and hence there is an unsuccessful computation of
p ‖o.

(ii) p ⇓ [[s]]I and p
[[s]]I
=⇒. Since qn ⇓, in the computation there exists qm such that

qn =⇒ qm 6−→ and qm
a−→ qm+1. Moreover, on =⇒ om

a−→ om+1. Consequently,
for all L such that a 6∈ L, we have (q after [[s]]I) 6MUST L. Since p �I

unc q,
then for all L such that a 6∈ L, we have (p after [[s]]I) 6MUST L. Therefore,

there exists pn ∈ (p after [[s]]I) and pn
a

=⇒ pm+1. Hence, for all n there is an
unsuccessful computation p‖o =⇒ pn‖on =⇒ pm+1‖om+1.
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