Abstract
Robotic systems hold great promise to assist with household, educational, and research tasks, but the difficulties of designing and building such robots often are an inhibitive barrier preventing their development. This paper presents a framework in which simple robots can be easily designed and then rapidly fabricated and tested, paving the way for greater proliferation of robot designs. The Python package presented in this work allows for the scripted generation of mechanical elements, using the principles of hierarchical structure and modular reuse to simplify the design process. These structures are then manufactured using an origami-inspired method in which precision cut sheets of plastic film are folded to achieve desired geometries. Using these processes, lightweight, low cost, rapidly built quadrotors were designed and fabricated. Flight tests compared the resulting robots against similar micro air vehicles (MAVs) generated using other processes. Despite lower tolerance and precision, robots generated using the process presented in this work took significantly less time and cost to design and build, and yielded lighter, lower power MAVs.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Forlizzi, J., DiSalvo, C.: Service robots in the domestic environment: a study of the roomba vacuum in the home. In: Proceedings of the 1st ACM SIGCHI/SIGART Conference on Human-Robot Interaction, ACM, 258–265 (2006)
Lauder, G.V.: Flight of the robofly. Nature 412(16), 688–689 (2001)
AFRON design challenges—african robotics network (AFRON). Online. http://robotics-africa.org/afron-design-challenges.html accessed 01 Feb 2014
Felton, S.M., Tolley, M.T., Onal, C.D., Rus, D., Wood, R.J.: Robot self-assembly by folding: a printed inchworm robot. In: 2013 IEEE International Conference on Robotics and Automation (ICRA), 277–282. IEEE (2013)
Onal, C.D., Wood, R.J., Rus, D.: Towards printable robotics: origami-inspired planar fabrication of three-dimensional mechanisms. In: 2011 IEEE International Conference on Robotics and Automation (ICRA), 4608–4613. IEEE (2011)
Onal, C.D., Tolley, M.T., Koyanagi, K., Wood, R.J., Rus, D.: Shape memory alloy actuation of a folded bio-inspired hexapod. In: ATBio Workshop, IROS (2012)
Onal, C.D., Wood, R.J., Rus, D.: An origami-inspired approach to worm robots. IEEE/ASME Trans. Mechatron. 18(2), 430–438 (2013)
Thingiverse—digital design for physical objects. Online. http://www.thingiverse.com/. accessed 01 Feb 2014
Vicon. Online. http://www.vicon.com/. Accessed 01 Feb 2014
Michael, N., Mellinger, D., Lindsey, Q., Kumar, V.: The GRASP Multiple Micro-UAV Testbed. IEEE Robotics and Automation Magazine 17(3), 56 (2010)
Kmel robotics. Online. http://www.kmelrobotics.com. Accessed 01 Feb 2014
Kushleyev, A., Mellinger, D., Kumar, V.: Towards A Swarm of Agile Micro Quadrotors. Science and Systems. In: Proceedings of Robotics (2012)
Mehta, A.M., Pister, K.S.J.: Warpwing: a complete open source control platform for miniature robots. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 5169–5174. IEEE (2010)
Acknowledgments
This work was funded in part by NSF grants 1240383 and 1138967, for which the authors express thanks.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Mehta, A.M., Rus, D., Mohta, K., Mulgaonkar, Y., Piccoli, M., Kumar, V. (2016). A Scripted Printable Quadrotor: Rapid Design and Fabrication of a Folded MAV. In: Inaba, M., Corke, P. (eds) Robotics Research. Springer Tracts in Advanced Robotics, vol 114. Springer, Cham. https://doi.org/10.1007/978-3-319-28872-7_12
Download citation
DOI: https://doi.org/10.1007/978-3-319-28872-7_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-28870-3
Online ISBN: 978-3-319-28872-7
eBook Packages: EngineeringEngineering (R0)