Abstract
This paper presents a unified and model-free framework for the detection and tracking of dynamic objects with 2D laser range finders in an autonomous driving scenario. A novel state formulation is proposed that captures joint estimates of the sensor pose, a local static background and dynamic states of moving objects. In addition, we contribute a new hierarchical data association algorithm to associate raw laser measurements to observable states, and within which, a new variant of the Joint Compatibility Branch and Bound (JCBB) algorithm is introduced for problems with large numbers of measurements. The system is calibrated systematically on 7.5K labeled object examples and evaluated on 6K test cases, and is shown to greatly outperform an existing industry standard targeted at the same problem domain.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Arras, K., Grzonka, S., Luber, M., Burgard, W.: Efficient people tracking in laser range data using a multi-hypothesis leg-tracker with adaptive occlusion probabilities. In: Proceedings of the IEEE International Conference on Robotics and Automation, ICRA 2008, pp. 1710–1715 (2008)
Bar-Shalom, Y., Kirubarajan, T., Li, X.R.: Estimation with applications to tracking and navigation. Wiley, New York (2002)
Besl, P., McKay, N.D.: A method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 239–256 (1992)
Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The Pascal visual object classes (VOC) challenge. Int. J. Comput. Vis. 88(2), 303–338 (2010)
Gavrila, D.M., Munder, S.: Multi-cue pedestrian detection and tracking from a moving vehicle. Int. J. Comput. Vis. 73(1), 41–59 (2007)
Leonard, J., How, J., Teller, S., Berger, M., Campbell, S., Fiore, G., Fletcher, L., Frazzoli, E., Huang, A., Karaman, S., Koch, O., Kuwata, Y., Moore, D., Olson, E., Peters, S., Teo, J., Truax, R., Walter, M., Barrett, D., Epstein, A., Maheloni, K., Moyer, K., Jones, T., Buckley, R., Antone, M., Galejs, R., Krishnamurthy, S., Williams, J.: A perception-driven autonomous urban vehicle. J. Field Robot. 25(10), 727–774 (2008)
Mertz, C., Navarro-Serment, L.E., MacLachlan, R., Rybski, P., Steinfeld, A., Suppe, A., Urmson, C., Vandapel, N., Hebert, M., Thorpe, C., Duggins, D., Gowdy, J.: Moving object detection with laser scanners. J. Field Robot. 30(1), 17–43 (2013)
Miyasaka, T., Ohama, Y., Ninomiya, Y.: Ego-motion estimation and moving object tracking using multi-layer LIDAR. In: Proceedings of the Intelligent Vehicles Symposium, pp. 151–156. IEEE (2009)
Neira, J., Tardos, J.: Data association in stochastic mapping using the joint compatibility test. IEEE Trans. Robot. Autom. 17(6), 890–897 (2001)
Snoek, J., Larochelle, H., Adams, R.P.: Practical Bayesian optimization of machine learning algorithms. In: Neural Information Processing Systems (2012)
Thrun, S., Montemerlo, M., Dahlkamp, H., Stavens, D., Aron, A., Diebel, J., Fong, P., Gale, J., Halpenny, M., Hoffmann, G., Lau, K., Oakley, C., Palatucci, M., Pratt, V., Stang, P., Strohband, S., Dupont, C., Jendrossek, L.E., Koelen, C., Markey, C., Rummel, C., van Niekerk, J., Jensen, E., Alessandrini, P., Bradski, G., Davies, B., Ettinger, S., Kaehler, A., Nefian, A., Mahoney, P.: Stanley: the robot that won the DARPA grand challenge. J. Field Robot. 23(9), 661–692 (2006)
Tipaldi, G., Ramos, F.: Motion clustering and estimation with conditional random fields. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2009, pp. 872–877 (2009)
Topp, E., Christensen, H.: Tracking for following and passing persons. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2005), pp. 2321–2327 (2005)
Urmson, C., Anhalt, J., Bagnell, D., Baker, C., Bittner, R., Clark, M.N., Dolan, J., Duggins, D., Galatali, T., Geyer, C., Gittleman, M., Harbaugh, S., Hebert, M., Howard, T.M., Kolski, S., Kelly, A., Likhachev, M., McNaughton, M., Miller, N., Peterson, K., Pilnick, B., Rajkumar, R., Rybski, P., Salesky, B., Seo, Y.W., Singh, S., Snider, J., Stentz, A., Whittaker, W.R., Wolkowicki, Z., Ziglar, J., Bae, H., Brown, T., Demitrish, D., Litkouhi, B., Nickolaou, J., Sadekar, V., Zhang, W., Struble, J., Taylor, M., Darms, M., Ferguson, D.: Autonomous driving in urban environments: boss and the urban challenge. J. Field Robot. 25(8), 425–466 (2008)
van de Ven, J., Ramos, F., Tipaldi, G.: An integrated probabilistic model for scan-matching, moving object detection and motion estimation. In: Proceedings of the 2010 IEEE International Conference on Robotics and Automation (ICRA), pp. 887–894 (2010)
Wang, C.C., Thorpe, C., Thrun, S.: Online simultaneous localization and mapping with detection and tracking of moving objects: theory and results from a ground vehicle in crowded urban areas. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Taipei, Taiwan (2003)
Williams, S.B.: Efficient solutions to autonomous mapping and navigation problems. Ph.D. thesis, Australian Centre for Field Robotics, The University of Sydney (2001)
Yang, S.W., Wang, C.C.: Simultaneous egomotion estimation, segmentation, and moving object detection. J. Field Robot. 28(4), 565–588 (2011)
Acknowledgments
This work is supported by the Clarendon Fund. Paul Newman is supported by an EPSRC Leadership Fellowship, EPSRC Grant EP/I005021/1. The authors wish to thank Jasper Snoek for making the Spearmint Bayesian optimisation package publicly available.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Appendix
Appendix
In this appendix, we state the exact forms of the observation models applied to boundary points on the static background and dynamic objects respectively. All variables involved in what follows are defined in Sect. 4.1, and the function \(\mathbf {u}\) maps a pair of 2D cartesian coordinates into polar coordinates.
Each boundary point j on the static background may potentially generate a laser measurement \(\mathbf {z} = [r,\theta ]^T\), and hence its measurement model is the boundary point’s location in polar coordinates in the sensor’s frame of reference:
Each boundary point j on any dynamic track i may also give rise to a laser measurement, and the measurement model in this case is the 2D polar coordinates of the boundary point in the sensor frame, and is given by:
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Wang, D.Z., Posner, I., Newman, P. (2016). A New Approach to Model-Free Tracking with 2D Lidar. In: Inaba, M., Corke, P. (eds) Robotics Research. Springer Tracts in Advanced Robotics, vol 114. Springer, Cham. https://doi.org/10.1007/978-3-319-28872-7_32
Download citation
DOI: https://doi.org/10.1007/978-3-319-28872-7_32
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-28870-3
Online ISBN: 978-3-319-28872-7
eBook Packages: EngineeringEngineering (R0)