Skip to main content

Context in Robotics and Information Fusion

  • Chapter
  • First Online:
Context-Enhanced Information Fusion

Abstract

Robotics systems need to be robust and adaptable to multiple operational conditions, in order to be deployable in different application domains. Contextual knowledge can be used for achieving greater flexibility and robustness in tackling the main tasks of a robot, namely mission execution, adaptability to environmental conditions, and self-assessment of performance. In this chapter, we review the research work focusing on the acquisition, management, and deployment of contextual information in robotic systems. Our aim is to show that several uses of contextual knowledge (at different representational levels) have been proposed in the literature, regarding many tasks that are typically required for mobile robots. As a result of this survey, we analyze which notions and approaches are applicable to the design and implementation of architectures for information fusion. More specifically, we sketch an architectural framework which enables for an effective engineering of systems that use contextual knowledge, by including the acquisition, representation, and use of contextual information into a framework for information fusion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. L. Snidaro, J. García, J. Llinas, Context-based information fusion: a survey and discussion. Inf. Fusion 25, 16–31 (2015)

    Article  Google Scholar 

  2. D. Calisi, A. Farinelli, L. Iocchi, D. Nardi, Multi-objective exploration and search for autonomous rescue robots. J. Field Robot. Spec. Issue Quant. Perform. Eval. Robot. Intell. Syst. 24, 763–777 (2007)

    Google Scholar 

  3. R.M. Turner, Context-mediated behavior for intelligent agents. Int. J. Hum Comput. Stud. 48(3), 307–330 (1998)

    Article  Google Scholar 

  4. E. Blasch, J. Llinas, D. Lambert, P. Valin, S. Das, C. Chee, M. Kokar, E. Shahbazian, High level information fusion developments, issues, and grand challenges: Fusion 2010 panel discussion, in 2010 13th Conference on Information Fusion (FUSION), 2010, pp. 1–8

    Google Scholar 

  5. R.C. Luo, M.G. Kay (eds.), Multisensor Integration and Fusion for Intelligent Machines and Systems (Ablex Publishing Corp., 1995)

    Google Scholar 

  6. M. Kam, X. Zhu, P. Kalata, Sensor fusion for mobile robot navigation. Proc. IEEE 85(1), 108–119 (1997)

    Article  Google Scholar 

  7. E. Blasch, Assembling a distributed fused information-based human-computer cognitive decision making tool. Aerosp. Electron. Syst. Mag. IEEE 15(5), 11–17 (2000)

    Article  Google Scholar 

  8. D. Shen, G. Chen, J.B. Cruz, E. Blasch. A game theoretic data fusion aided path planning approach for cooperative uav isr, in Aerospace Conference, 2008 IEEE, 2008, pp. 1–9

    Google Scholar 

  9. A. Nüchter, O. Wulf, K. Lingemann, J. Hertzberg, B. Wagner, H. Surmann, 3D Mapping with semantic knowledge, in RoboCup 2005: Robot Soccer World Cup IX, 2005, pp. 335–346

    Google Scholar 

  10. A. Rottmann, Ó. Martínez, M. Cyrill, S.W. Burgard, Place classification of indoor environments with mobile robots using boosting, in Proceedings of the National Conference on Artificial Intelligence (AAAI), 2005, pp. 1306–1311

    Google Scholar 

  11. N. Hawes, M. Klenk, K. Lockwood, G.S. Horn, J.D. Kelleher, Towards a cognitive system that can recognize spatial regions based on context, in AAAI, 2012

    Google Scholar 

  12. R. Triebel, P. Pfaff, W. Burgard, Multi-level surface maps for outdoor terrain mapping and loop closing, in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2006

    Google Scholar 

  13. A. Aboshosha, A. Zell, Adaptation of rescue robot behaviour in unknown terrains based on stochastic and fuzzy logic approaches, in Proceedings of 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems, (IROS’03), vol. 3, 2003, pp. 2859–2864

    Google Scholar 

  14. C. Dornhege, A. Kleiner, Behavior maps for online planning of obstacle negotiation and climbing on rough terrain. Technical Report 233, University of Freiburg, 2007

    Google Scholar 

  15. R. Simmons, D. Apfelbaum, A task description language for robot control, in IROS, International Conference on Intelligent Robots and Systems, vol. 3, 1998, pp. 1931–1937

    Google Scholar 

  16. A. Saffiotti, K. Konolige, E. Ruspini, A multivalued logic approach to integrating planning and control. Artif. Intell. 76, 481–526 (1995)

    Article  Google Scholar 

  17. W.H. Mou, M.F. Chang, C.K. Liao, Y.H. Hsu, S.H. Tseng, L.C. Fu, Context-aware assisted interactive robotic walker for parkinson’s disease patients, in 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2012, pp. 329–334

    Google Scholar 

  18. P. Newman, D. Cole, K. Ho, Outdoor SLAM using visual appearance and laser ranging, in Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), 2006, pp. 1180–1187

    Google Scholar 

  19. M. Beetz, T. Arbuckle, M. Bennewitz, W. Burgard, A. Cremers, D. Fox, H. Grosskreutz, D. Hahnel, D. Schulz, Integrated plan-based control of autonomous service robots in human environments. IEEE Intell. Syst. 16(5), 56–65 (2001)

    Google Scholar 

  20. K. K. Narayanan, L. F. Posada, F. Hoffmann, T. Bertram, Scenario and context specific visual robot behavior learning, in 2011 IEEE International Conference on Robotics and Automation (ICRA), 2011, pp. 1180–1185

    Google Scholar 

  21. Z. Liu, E. Blasch, Z. Xue, J. Zhao, R. Laganiere, W. Wu, Objective assessment of multiresolution image fusion algorithms for context enhancement in night vision: a comparative study. Pattern Anal. Mach. Intell. IEEE Trans. 34(1), 94–109 (2012)

    Article  Google Scholar 

  22. A.G. Buch, D. Kraft, J.K. Kamarainen, H.G. Petersen, N. Kruger, Pose estimation using local structure-specific shape and appearance context, in 2013 IEEE International Conference on Robotics and Automation (ICRA), 2013, pp. 2080–2087

    Google Scholar 

  23. G. Costante, T.A. Ciarfuglia, P. Valigi, E. Ricci, A transfer learning approach for multi-cue semantic place recognition, in 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2013, pp. 2122–2129

    Google Scholar 

  24. Z. Liu, D. Chen, K. M. Wurm, G. Von Wichert, Using rule-based context knowledge to model table-top scenes, in 2014 IEEE International Conference on Robotics and Automation (ICRA), 2014, pp. 2646–2651

    Google Scholar 

  25. J.E. Laird, K.R. Kinkade, S. Mohan, J.Z. Xu, Cognitive robotics using the soar cognitive architecture. Cognitive Robotics AAAI Technical Report WS-12-06. Accessed 27 July, 2012, pp. 46–54

    Google Scholar 

  26. S. Karapinar, S. Sariel-Talay, P. Yildiz, M. Ersen, Learning guided planning for robust task execution in cognitive robotics, in Proceedings of the AAAI-13 Workshop on Intelligent Robotic Systems, 2013, pp. 26–31

    Google Scholar 

  27. A. Scalmato, A. Sgorbissa, R. Zaccaria, Describing and classifying spatial and temporal contexts with owl dl in ubiquitous robotics, in 2012 IEEE International Conference on Robotics and Automation (ICRA), 2012, pp. 237–244

    Google Scholar 

  28. R.M. Turner, S. Rode, D. Gagne, Toward distributed context-mediated behavior for multiagent systems, in Modeling and Using Context (Springer, Berlin, 2013)

    Google Scholar 

  29. T. Witzig, J.M. Zollner, D. Pangercic, S. Osentoski, R. Jakel, R. Dillmann, Context aware shared autonomy for robotic manipulation tasks, in 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2013, pp. 5686–5693

    Google Scholar 

  30. D. Held, J. Levinson, S. Thrun, A probabilistic framework for car detection in images using context and scale, in 2012 IEEE International Conference on Robotics and Automation (ICRA), 2012, pp. 1628–1634

    Google Scholar 

  31. U. Kurup, C. Lebiere, A. Stentz, M. Hebert, Using expectations to drive cognitive behavior, in AAAI, 2012

    Google Scholar 

  32. J. Llinas, A survey and analysis of frameworks and framework issues for information fusion applications, in Hybrid Artificial Intelligence Systems, Lecture Notes in Computer Science, vol. 6076, 2010, pp. 14–23

    Google Scholar 

  33. J. Gomez-Romero, J. Garcia, M. Kandefer, J. Llinas, J.M. Molina, M.A. Patricio, M. Prentice, S.C. Shapiro. Strategies and techniques for use and exploitation of contextual information in high-level fusion architectures, in 13th Conference on Information Fusion, 2010, pp. 1–8

    Google Scholar 

  34. S. Acharya, M. Kam, Evidence combination for hard and soft sensor data fusion, in 2011 Proceedings of the 14th International Conference on Information Fusion (FUSION), 2011, pp. 1–8

    Google Scholar 

  35. L. Snidaro, I. Visentini, J. Llinas, G.L. Foresti, Context in fusion: Some considerations in a JDL perspective, in 2013 16th International Conference on Information Fusion (FUSION), 2013, pp. 115–120

    Google Scholar 

  36. J. Llinas, C. Bowman, G. Rogova, A. Steinberg, F. White, Revisiting the JDL data fusion model ii, in Proceedings of the Seventh International Conference on Information Fusion (FUSION 2004), eds. by P. Svensson, J. Schubert, 2004, pp. 1218–1230

    Google Scholar 

  37. CEDRs TG Road Safety. Safe distance between vehicles. Technical report, Conference of European Directors of Roads (CEDR), 2010

    Google Scholar 

  38. M. Roser, A. Geiger, Video-based raindrop detection for improved image registration, in 2009 IEEE 12th International Conference on Computer Vision Workshops (ICCV Workshops), 2009, pp. 570–577

    Google Scholar 

  39. S. You, R.T. Tan, R. Kawakami, K. Ikeuchi, Adherent raindrop detection and removal in video, in 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2013, pp. 1035–1042

    Google Scholar 

  40. M.S. Duvall, Battery evaluation for plug-in hybrid electric vehicles, in Vehicle Power and Propulsion, 2005 IEEE Conference, 2005, p. 6

    Google Scholar 

Download references

Acknowledgements

This work was supported by ONRG Grant N62909-14-1-N061.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Domenico D. Bloisi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland (outside the USA)

About this chapter

Cite this chapter

Bloisi, D.D., Nardi, D., Riccio, F., Trapani, F. (2016). Context in Robotics and Information Fusion. In: Snidaro, L., García, J., Llinas, J., Blasch, E. (eds) Context-Enhanced Information Fusion. Advances in Computer Vision and Pattern Recognition. Springer, Cham. https://doi.org/10.1007/978-3-319-28971-7_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28971-7_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28969-4

  • Online ISBN: 978-3-319-28971-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics