Skip to main content

An Optimal Reduce Placement Algorithm for Data Skew Based on Sampling

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9495))

Abstract

For frequent disk I/O and big data transmissions among different racks and physical nodes, the intermediate data communication has become the biggest performance bottle-neck in most running Hadoop systems. This paper proposes a reduce placement algorithm called CORP to schedule related map and reduce tasks on the near nodes or clusters or racks for the data locality. Since the number of keys cannot be counted until the input data are processed by map tasks, this paper firstly provides a sampling algorithm based on reservoir sampling to achieve the distribution of the keys in intermediate data. Through calculating the distance and cost matrices among the cross node communication, the related map and reduce tasks can be scheduled to relatively near physical nodes for data locality. Experimental results show that CORP can not only improve the balance of reduce tasks effectively, but also decrease the job execution time for the lower inner data communication.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bourguiba, M., Haddadou, K., El Korbi, I., Pujolle, G.: Improving network i/o virtualization for cloud computing. IEEE Trans. Parallel Distrib. Syst. 25(3), 673–681 (2014)

    Article  Google Scholar 

  2. Ho, L.-Y., Wu, J.-J., Liu, P.: Optimal algorithms for cross-rackcommunication optimization in mapreduce framework. In: 2011 IEEE International Conference on Cloud Computing(CLOUD), pp. 420–427. IEEE (2011)

    Google Scholar 

  3. Isard, M., Prabhakaran, V., Currey, J., Wieder, U., Talwar, K., Goldberg, A.: Quincy: Fair scheduling for distributed computing clusters. In: Proceedings of the ACM SIGOPS 22nd Symposium on Operating Systemsprinciples, pp. 261–276. ACM (2009)

    Google Scholar 

  4. Ahmad, F., Lee, S., Thottethodi, M., Vijaykumar, T.: Mapreduce withcommunication overlap, technical report, Technical Report (2007)

    Google Scholar 

  5. Maheshwari, N., Nanduri, R., Varma, V.: Dynamic energy efficient data placement and cluster reconfiguration algorithm for mapreduce framework. Future Gener. Comput. Syst. 28(1), 119–127 (2012)

    Article  Google Scholar 

  6. Sandholm, T., Lai, K.: Dynamic proportional share scheduling in hadoop. In: Frachtenberg, E., Schwiegelshohn, U. (eds.) JSSPP 2010. LNCS, vol. 6253, pp. 110–131. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  7. W. [EB/OL]. http://en.wikipedia.org/wiki/greedy algorithm

  8. Sleator, D.D., Tarjan, R.E.: Self-adjusting binary search trees. J. ACM (JACM) 32(3), 652–686 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  9. Kwon, Y., Balazinska, M., Howe, B., Rolia, J.: Skewtune: mitigating skew inmapreduce applications. In: Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data, pp. 25–36. ACM (2012)

    Google Scholar 

  10. Xu, Y., Kostamaa, P.: Efficient outer join data skew handling in parallel dbms. Proc. VLDB Endowment 2(2), 1390–1396 (2009)

    Article  Google Scholar 

  11. Palanisamy, B., Singh, A., Liu, L., Jain, B.: Purlieus: locality-awareresource allocation for mapreduce in a cloud. In: Proceedings of 2011International Conference for High Performance Computing, Networking, Storageand Analysis, p. 58. ACM (2011)

    Google Scholar 

  12. Ardizzoni, E., Bertossi, A., Pinotti, M.C., Ramaprasad, S., Rizzi, R., Shashanka, M.V., et al.: Optimal skewed data allocation on multiple channels with flat broadcast per channel. IEEE Trans. Comput. 54(5), 558–572 (2005)

    Article  Google Scholar 

  13. Acharya, S., Gibbons, P.B., Poosala, V.: Congressional samples forapproximate answering of group-by queries. ACM SIGMOD Rec. 29(2), 487–498 (2000). ACM

    Article  Google Scholar 

  14. Kwon, Y., Balazinska, M., Howe, B.: Skewtune: mitigating skew inmapreduce applications. In: 2012 ACM SIGMODInternational Conference on Management of Data, pp. 25–36. ACM (2012)

    Google Scholar 

  15. Chen, Q., Liu, C., Xiao, Z.: Libra: Lightweight data skew mitigation in mapreduce. IEEE Trans. Parallel Distrib. Syst. 99, 1–14 (2014)

    Article  Google Scholar 

  16. Lin, J.: The curse of zipf and limits to parallelization: A look at thestragglers problem in mapreduce. In: 7th Workshop on Large-Scale Distributed Systems for Information Retrieval, vol. 1 (2009)

    Google Scholar 

  17. Chen, Y., Wei, H.W., Wei, M.F., Chen, Y.J.: LaSA: A locality-aware scheduling algorithm forhadoop-mapreduce resource assignment. In: 2013 International Conference on Collaboration Technologies and Systems (CTS), pp. 342–346. IEEE (2013)

    Google Scholar 

  18. Hammoud, M., Sakr, M.F.: Locality-aware reduce task scheduling formapreduce. In: 2011 IEEE Third nternational Conference on Cloud Computing Technology and Science 29 2011-December 1 2011

    Google Scholar 

  19. Grover, R., Carey, M.J.: Extending map-reduce for efficient predicate-basedsampling. In: 2012 IEEE 28th InternationalConference on Data Engineering (ICDE), pp. 486–497. IEEE (2012)

    Google Scholar 

  20. Atta, F., Viglas, S.D., Niazi, S.: Sand joina skew handling joinalgorithm for google’s mapreduce framework. In: 2011 IEEE 14th International Multitopic Conference, pp. 170–175. IEEE (2011)

    Google Scholar 

  21. Tang, Z., Jiang, L.G., Zhou, J.Q., Li, K.K., Li, K.K.: A self-adaptive scheduling algorithm for reduce start time. Future Gener. Comput. Syst. 43, 51–60 (2015)

    Article  Google Scholar 

  22. Gufler, B., Augsten, N., Reiser, A., Kemper, A.: Load balancing in mapreducebased on scalable cardinality estimates. In: 2012 IEEE 28th International Conference on Data Engineering (ICDE), pp. 522–533. IEEE (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhuo Tang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Tang, Z., Ma, W., Li, R., Li, K., Li, K. (2016). An Optimal Reduce Placement Algorithm for Data Skew Based on Sampling. In: Zhan, J., Han, R., Zicari, R. (eds) Big Data Benchmarks, Performance Optimization, and Emerging Hardware. BPOE 2015. Lecture Notes in Computer Science(), vol 9495. Springer, Cham. https://doi.org/10.1007/978-3-319-29006-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29006-5_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29005-8

  • Online ISBN: 978-3-319-29006-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics