Skip to main content

RoADS: A Road Pavement Monitoring System for Anomaly Detection Using Smart Phones

  • Conference paper
  • First Online:
Big Data Analytics in the Social and Ubiquitous Context (SENSEML 2015, MUSE 2014, MSM 2014)

Abstract

Monitoring the road pavement is a challenging task. Authorities spend time and finances to monitor the state and quality of the road pavement. This paper investigate road surface monitoring with smartphones equipped with GPS and inertial sensors: accelerometer and gyroscope. In this study we describe the conducted experiments with data from the time domain, frequency domain and wavelet transformation, and a method to reduce the effects of speed, slopes and drifts from sensor signals. A new audiovisual data labeling technique is proposed. Our system named RoADS, implements wavelet decomposition analysis for signal processing of inertial sensor signals and Support Vector Machine (SVM) for anomaly detection and classification. Using these methods we are able to build a real time multi class road anomaly detector. We obtained a consistent accuracy of \(\approx \)90 % on detecting severe anomalies regardless of vehicle type and road location. Local road authorities and communities can benefit from this system to evaluate the state of their road network pavement in real time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    CIA World Factbook https://www.cia.gov/library/publications/the-world-factbook/ fields/2085.html.

  2. 2.

    The World Bank 2011 data: http://wdi.worldbank.org/table/3.13.

  3. 3.

    Pavement Evaluation Vehicle https://www.fhwa.dot.gov/research/tfhrc/labs/pavement/index.cfm.

  4. 4.

    Inertia ProMove 3D Motion Tracking: http://inertia-technology.com.

  5. 5.

    http://www.urusoft.net/products.php?cat=sw.

  6. 6.

    Keyhole Markup Language https://developers.google.com/kml/documentation/kmlreference.

References

  1. ASTM Standard E867, Standard Terminology Relating to Vehicle-Pavement Systems, June 2012

    Google Scholar 

  2. Ben-Hur, A., Weston, J.: A users guide to support vector machines. In: Carugo, O., Eisenhaber, F. (eds.) Data Mining Techniques for the Life Sciences, Methods in Molecular Biology, vol. 609, pp. 223–239. Humana Press, New York (2010)

    Chapter  Google Scholar 

  3. Burges, C.J.: A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Disc. 2(2), 121–167 (1998)

    Article  Google Scholar 

  4. Daubechies, I.: The wavelet transform, time-frequency localization and signal analysis. IEEE Trans. Inf. Theory 36(5), 961–1005 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  5. Eriksson, J., Girod, L., Hull, B., Newton, R., Madden, S., Balakrishnan, H.: The pothole patrol: using a mobile sensor network for road surface monitoring. In: Proceedings of the 6th International Conference on Mobile Systems, Applications, and Services, MobiSys 2008, pp. 29–39. ACM, New York (2008)

    Google Scholar 

  6. Feldman, M.: Signal Demodulation. Wiley, New York (2011)

    Book  Google Scholar 

  7. Google: Android developer sensor and location classes. http://developer.android.com/reference/android/hardware/Sensor.html

  8. Gottlieb, I.: Understanding amplitude modulation. Foulsham-Sams techn. books, H. W. Sams (1966)

    Google Scholar 

  9. Hesami, R., McManus, K.J.: Signal processing approach to road roughness analysis and measurement. In: TENCON 2009–2009 IEEE Region 10 Conference, pp. 1–6. IEEE (2009)

    Google Scholar 

  10. Huang, N., Attoh-Okine, N.: The Hilbert-Huang Transform in Engineering. Taylor & Francis, New York (2005)

    Book  MATH  Google Scholar 

  11. LaMance, J., DeSalas, J., Jarvinen, J.: Innovation: assisted GPS: a low-infrastructure approach. GPSWorld 13, 46–51 (2002)

    Google Scholar 

  12. Mallat, S.: A Wavelet Tour of Signal Processing: The Sparse Way. Academic Press, New York (2008)

    Google Scholar 

  13. Milette, G., Stroud, A.: Professional Android Sensor Programming. Wrox, Birmingham (2012)

    Google Scholar 

  14. Miller, J.S., Bellinger, W.Y.: Distress identification manual for the long-term pavement performance program (fourth revised edition). Technical report FHWA-RD-03-031, Federal Highway Administration, June 2003

    Google Scholar 

  15. Miller, T., Zaloshnja, E.: On a crash course: The dangers and health costs of deficient roadways (2009)

    Google Scholar 

  16. Mohan, P., Padmanabhan, V.N., Ramjee, R.: Nericell: rich monitoring of road and traffic conditions using mobile smartphones. In: Proceedings of the 6th ACM Conference on Embedded Network Sensor Systems, SenSys 2008, pp. 323–336. ACM, New York (2008)

    Google Scholar 

  17. Nason, G.P., Silverman, B.W.: The stationary wavelet transform and some statistical applications. In: Antoniadis, A., Oppenheim, G. (eds.) Wavelets and Statistics, pp. 281–299. Springer, New York (1995)

    Chapter  Google Scholar 

  18. Perttunen, M., et al.: Distributed road surface condition monitoring using mobile phones. In: Hsu, C.-H., Yang, L.T., Ma, J., Zhu, C. (eds.) UIC 2011. LNCS, vol. 6905, pp. 64–78. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  19. Sayers, M., Karamihas, S.: The Little Book of Profiling: Basic Information about Measuring and Interpreting Road Profiles. University of Michigan. Transportation Research Institute, UMTRI (1996)

    Google Scholar 

  20. Schut, P., de Bree, T., Fuchs, G.: Responsible pavement management. In: First European Pavement Management System: Conference-Proceedings and Final Program (2000)

    Google Scholar 

  21. Tai, Y.C., Chan, C.W., Hsu, J.Y.J.: Automatic road anomaly detection using smart mobile device. In: Proceedings of the 2010 Conference on Technologies and Applications of Artificial Intelligence (TAAI 2010), 18–20 November 2010, Hsinchu, Taiwan, pp. 1–8 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatjon Seraj .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Seraj, F., van der Zwaag, B.J., Dilo, A., Luarasi, T., Havinga, P. (2016). RoADS: A Road Pavement Monitoring System for Anomaly Detection Using Smart Phones. In: Atzmueller, M., Chin, A., Janssen, F., Schweizer, I., Trattner, C. (eds) Big Data Analytics in the Social and Ubiquitous Context. SENSEML MUSE MSM 2015 2014 2014. Lecture Notes in Computer Science(), vol 9546. Springer, Cham. https://doi.org/10.1007/978-3-319-29009-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29009-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29008-9

  • Online ISBN: 978-3-319-29009-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics