Skip to main content

Possibilistic WorkFlow Net for Deadlock Avoidance in Interorganizational Business Processes

  • Conference paper
  • First Online:
Enterprise Information Systems (ICEIS 2015)

Part of the book series: Lecture Notes in Business Information Processing ((LNBIP,volume 241))

Included in the following conference series:

  • 657 Accesses

Abstract

Soundness property is an important criterion which needs to be satisfied when treating workflow processes. However, a significant part of industrial business process models is not in fact sound, which can lead to deadlock situations due to message ordering mismatches, for example. In order to avoid deadlock situation in interorganizational business processes, an approach based on Siphon structures, possibilistic Petri nets and interorganizational WorkFlow nets is proposed. A deadlock situation is characterized by an insufficiently marked Siphon. Possibilistic Petri nets with uncertainty on the marking and on the transition firing are used to ensure the existence of at least one transition firing sequence enabling the completion of the process without encountering the deadlock situation. Routing patterns and communication protocols that exist in business processes are modeled by interorganizational WorkFlow nets. Combining these formalisms, a kind of possibilistic WorkFlow net is obtained.

L.P. de Rezende—Scholarship CAPES - Proc. \(n^{\circ }.\) 99999.001925/2015-06.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    \(\mathbb {P}(T^*)\) is the set of all non-empty subsets of \(T^*\).

References

  1. van der Aalst, W., van Hee, K.: Workflow Management: Models, Methods, and Systems. MIT Press, Cambridge (2004)

    Google Scholar 

  2. Members, W.M.C.: Glossary - a workflow management coalition specification. Technical report, Coalition, Workflow Management (1994)

    Google Scholar 

  3. van der Aalst, W.M.P.: Modeling and analyzing interorganizational workflows. In: International Conference on Application of Concurrency to System Design, pp. 262–272 (1998)

    Google Scholar 

  4. Silva, L.d.F., Soares Passos, L.M., Soares, M.d.S., Julia, S.: Siphon-based deadlock prevention policy for interorganizational workflow net design. In: IEEE International Conference on Information Reuse and Integration, pp. 293–300 (2013)

    Google Scholar 

  5. van der Aalst, W.M.P.: The application of petri nets to workflow management. J. Circ. Syst. Comput. 8, 21–66 (1998)

    Article  Google Scholar 

  6. Soares Passos, L., Julia, S.: Qualitative analysis of workflow nets using linear logic: Soundness verification. In: IEEE International Conference on Systems, Man and Cybernetics, SMC 2009, pp. 2843–2847 (2009)

    Google Scholar 

  7. Fahland, D., Favre, C., Koehler, J., Lohmann, N., Völzer, H., Wolf, K.: Analysis on demand: Instantaneous soundness checking of industrial business process models. Data Knowl. Eng. 70, 448–466 (2011)

    Article  Google Scholar 

  8. van der Aalst, W.M.P.: Loosely coupled interorganizational workflows: modeling and analyzing workflows crossing organizational boundaries. Inf. Manage. 37, 67–75 (2000)

    Article  Google Scholar 

  9. Xiong, P., Zhou, M., Pu, C.: A petri net siphon based solution to protocol-level service composition mismatches. In: IEEE International Conference on Web Services, pp. 952–958 (2009)

    Google Scholar 

  10. Tang, F., You, I., Yu, S., Wang, C.L., Guo, M., Liu, W.: An efficient deadlock prevention approach for service oriented transaction processing. Comput. Math. Appl. 63, 458–468 (2012)

    Article  Google Scholar 

  11. Mohanty, M., Kumara, P.: Deadlock prevention in process control computer system. In: International Conference on Distributed Computing and Internet Technology, pp. 12–16 (2013)

    Google Scholar 

  12. Park, J., Reveliotis, S.: Deadlock avoidance in sequential resource allocation systems with multiple resource acquisitions and flexible routings. IEEE Trans. Autom. Control 46, 1572–1583 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kohler, M., Schaad, A.: Avoiding policy-based deadlocks in business processes. In: International Conference on Availability, Reliability and Security, pp. 709–716 (2008)

    Google Scholar 

  14. Gang, X., Ming, W.Z.: Systemic solutions to deadlock in FMS. Am. Control Conf. 6, 5740–5745 (2004)

    Google Scholar 

  15. Ezpeleta, J., Colom, J.M., Martnez, J.: A petri net based deadlock prevention policy for flexible manufacturing systems. IEEE Trans. Robot. Autom. 11, 173–184 (1995)

    Article  Google Scholar 

  16. Huang, Y., Jeng, M., Xie, X., Chung, S.: Deadlock prevention policy based on petri nets and siphons. Int. J. Prod. Res. 39, 283–305 (2001)

    Article  MATH  Google Scholar 

  17. Li, Z., Zhou, M.: Elementary siphons of petri nets and their application to deadlock prevention in flexible manufacturing systems. IEEE Trans. Syst., Man, Cybern. 34, 38–51 (2004)

    Article  Google Scholar 

  18. Uzam, M., Zhou, M.: An iterative synthesis approach to petri net-based deadlock prevention policy for flexible manufacturing systems. IEEE Trans. Syst. Man Cybern. 37, 362–371 (2007)

    Article  Google Scholar 

  19. Ahmad, F., Huang, H., Wang, X.: Analysis of the petri net model of parallel manufacturing processes with shared resources. Inf. Sci. 181, 5249–5266 (2011)

    Article  Google Scholar 

  20. Chen, Y., Li, Z.: Design of a maximally permissive liveness-enforcing supervisor with a compressed supervisory structure for flexible manufacturing systems. Automatica 47, 1028–1034 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Chen, Y., Li, Z., Zhou, M.: Behaviorally optimal and structurally simple liveness-enforcing supervisors of flexible manufacturing systems. IEEE Trans. Syst. Man Cybern. 42, 615–629 (2012)

    Article  Google Scholar 

  22. Huang, Y.S., Pan, Y.L., Zhou, M.: Computationally improved optimal deadlock control policy for flexible manufacturing systems. IEEE Trans. Syst. Man Cybern. 42, 404–415 (2012)

    Article  Google Scholar 

  23. Li, Z., Liu, G., Hanisch, H.M., Zhou, M.: Deadlock prevention based on structure reuse of petri net supervisors for flexible manufacturing systems. IEEE Trans. Syst. Man Cybern. 42, 178–191 (2012)

    Article  Google Scholar 

  24. Liu, G., Li, Z., Barkaoui, K., Al-Ahmari, A.: Robustness of deadlock control for a class of petri nets with unreliable resources. Inf. Sci. 235, 259–279 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Murata, T.: Petri nets: Properties, analysis and applications. Proc. IEEE 77, 541–580 (1989)

    Article  Google Scholar 

  26. Boer, E., Murata, T.: Generating basis siphons and traps of petri nets using the sign incidence matrix. IEEE Trans. Circ. Syst. I: Fundam. Theor. Appl. 41, 266–271 (1994)

    Article  MathSciNet  Google Scholar 

  27. Barkaoui, K., Abdallah, I.: Deadlock avoidance in FMS based on structural theory of petri nets. IEEE Symp. Emerg. Technol. Factory Autom. 2, 499–510 (1995)

    Google Scholar 

  28. Chu, F., Xie, X.L.: Deadlock analysis of petri nets using siphons and mathematical programming. IEEE Trans. Robot. Autom. 13, 793–804 (1997)

    Article  Google Scholar 

  29. Maruta, T., Onoda, S., Ikkai, Y., Kobayashi, T., Komoda, N.: A deadlock detection algorithm for business processes workflow models. IEEE Int. Conf. Syst. Man Cybern. 1, 611–616 (1998)

    Google Scholar 

  30. Sadiq, W., Orlowska, M.E.: Analyzing process models using graph reduction techniques. Inf. Syst. 25, 117–134 (2000)

    Article  Google Scholar 

  31. Iordache, M., Moody, J., Antsaklis, P.: Synthesis of deadlock prevention supervisors using petri nets. IEEE Trans. Robot. Autom. 18, 59–68 (2002)

    Article  Google Scholar 

  32. Awad, A., Puhlmann, F.: Structural detection of deadlocks in business process models. In: Abramowicz, W., Fensel, D. (eds.) Business Information Systems. Lecture Notes in Business Information Processing, vol. 7, pp. 239–250. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  33. van der Aalst, W.M.P., van Hee, K.M., ter Hofstede, A.H.M., Sidorova, N., Verbeek, H.M.W., Voorhoeve, M., Wynn, M.T.: Soundness of workflow nets: Classification, decidability, and analysis. Form. Asp. Comput. 23, 333–363 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  34. Aalst, W.: Interorganizational workflows: an approach based on message sequence charts and petri nets. Syst. Analy. Model. Simul. 34, 335–367 (1999)

    MATH  Google Scholar 

  35. Sibertin-Blanc, C.: High level petri nets with data structure. In: Jensen, K., (ed.) Proceedings of the 6th European Workshop on Application and Theory of Petri Nets, Espoo, Finland, pp. 141–170 (1985)

    Google Scholar 

  36. Sibertin-Blanc, C.: Cooperative objects: principles, use and implementation. In: Agha, G., De Cindio, F., Rozenberg, G. (eds.) APN 2001. LNCS, vol. 2001, pp. 216–246. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  37. Cardoso, J.: Time fuzzy petri nets. In: Cardoso, J., Camargo, H. (eds.) Fuzziness in Petri Nets, vol. 22, pp. 115–145. Springer, New York (1999)

    Google Scholar 

  38. Cardoso, J., Valette, R., Dubois, D.: Petri nets with uncertain markings. In: Applications and Theory of Petri Nets, vol. 483, pp. 64–78 (1989)

    Google Scholar 

  39. Zhong, C., Li, Z.: Petri net based deadlock prevention approach for flexible manufacturing systems. In: Information Science Reference, pp. 416–433 (2011)

    Google Scholar 

  40. David, R., Alla, H.: Discrete, Continuous, and Hybrid Petri Nets, 2nd edn. Springer Publishing Company, Incorporated, Heidelberg (2010)

    Book  MATH  Google Scholar 

  41. Hack, M.: Analysis production schemata by petri nets. Master’s thesis, Massachusetts Institute of Technology (1972)

    Google Scholar 

  42. Karatkevich, A.: Analysis by solving logical equations - calculation of siphons and traps. In: Karatkevich, A. (ed.) Dynamic Analysis of Petri Net-Based Discrete Systems. Lecture Notes in Control and Information Sciences, vol. 356, pp. 87–93. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  43. Ezpeleta, J., Couvreur, J., Silva, M.: A new technique for finding a generating family of siphons, traps and st-components. application to colored petri nets. In: Rozenberg, G. (ed.) APN 1993. LNCS, vol. 674, pp. 126–147. Springer, Heidelberg (1993)

    Chapter  Google Scholar 

  44. Dingle, N.J., Knottenbelt, W.J., Suto, T.: Pipe2: A tool for the performance evaluation of generalised stochastic petri nets. SIGMETRICS Perform. Eval. Rev. 36, 34–39 (2009)

    Article  Google Scholar 

  45. Weske, M.: Business Process Management - Concepts, Languages Architectures. Springer, Heidelberg (2007)

    Google Scholar 

  46. van der Aalst, W.M.P.: Business process management: a comprehensive survey. ISRN Softw. Eng. 2013, 1–37 (2013)

    Article  Google Scholar 

  47. Rosemann, M., Vom Brocke, J.: The six core elements of business process management. In: Vom Brocke, J., Rosemann, M. (eds.) Handbook on Business Process Management 1, pp. 107–122. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  48. Beaudouin-Lafon, M., Mackay, W.E., Jensen, M., Andersen, P., Janecek, P., Lassen, H.M., Lund, K., Mortensen, K.H., Munck, S., Ratzer, A., Ravn, K., Christensen, S., Jensen, K.: CPN/Tools: a tool for editing and simulating coloured petri nets ETAPS tool demonstration related to TACAS. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, pp. 574–577. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  49. Rubinstein, R., Kroese, D.: Simulation and the Monte Carlo Method, 2nd edn. Wiley, New York (2008)

    MATH  Google Scholar 

Download references

Acknowledgement

The authors would like to thank CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior), FAPEMIG (Fundação de Amparo a Pesquisa do Estado de Minas Gerais) and CNPq (National Counsel of Technological and Scientific Development) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leiliane Pereira de Rezende .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

de Rezende, L.P., Julia, S. (2015). Possibilistic WorkFlow Net for Deadlock Avoidance in Interorganizational Business Processes. In: Hammoudi, S., Maciaszek, L., Teniente, E., Camp, O., Cordeiro, J. (eds) Enterprise Information Systems. ICEIS 2015. Lecture Notes in Business Information Processing, vol 241. Springer, Cham. https://doi.org/10.1007/978-3-319-29133-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29133-8_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29132-1

  • Online ISBN: 978-3-319-29133-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics