Abstract
The needs of reducing human error has been growing in every field of study, and medicine is one of those. Through the implementation of technologies is possible to help in the decision making process of clinics, therefore to reduce the difficulties that are typically faced. This study focuses on easing some of those difficulties by presenting real-time data mining models capable of predicting if a monitored patient, typically admitted in intensive care, will need to take vasopressors. Data Mining models were induced using clinical variables such as vital signs, laboratory analysis, among others. The best model presented a sensitivity of 94.94 %. With this model it is possible reducing the misuse of vasopressors acting as prevention. At same time it is offered a better care to patients by anticipating their treatment with vasopressors.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Kaur, M., Pawar, M., Kohli, J.K., Mishra, S.: Critical events in intensive care unit. Indian J. Crit. Care Med.: Peer-reviewed Official Publ. Indian Soc. Critical Care Med. 12, 28 (2008)
Silva, Á.J.B.M.D.: Modelos de intelegência artificial na análise da monitorização de eventos clínicos adversos, disfusão/falência de orgãos e prognóstico do doente crítico (2007)
Ramon, J., Fierens, D., Güiza, F., Meyfroidt, G., Blockeel, H., Bruynooghe, M., Van Den Berghe, G.: Mining data from intensive care patients. Adv. Eng. Inform. 21, 243–256 (2007)
Portela, F., Santos, M.F., Abelha, A., Machado, J., Rua, F.M., Silva, Á.: Real-time decision support using data mining to predict blood pressure critical events in intensive medicine patients, 9456 (2015)
Elliott, J.: Alpha-adrenoceptors in equine digital veins: evidence for the presence of both alpha~1 and alpha~2-receptors mediating vasoconstriction. J. Vet. Pharmacol. Ther. 20, 308–317 (1997)
Greenberg, H.B.: Cardiac arrhythmias: their mechanisms, diagnosis, and management. JAMA 246, 169 (1981)
Portela, F., Santos, M., Machado, J., Abelha, A., Silva, Á., Rua, F.: Preventing patient cardiac arrhythmias by using data mining techniques. In: 2014 IEEE Conference on Biomedical Engineering and Sciences (2014)
Portela, F., Santos, M.F., Machado, J., Abelha, A., Silva, Á., Rua, F.: Pervasive and intelligent decision support in intensive medicine – the complete picture. In: Bursa, M., Khuri, S., Renda, M. (eds.) ITBAM 2014. LNCS, vol. 8649, pp. 87–102. Springer, Heidelberg (2014)
Portela, C.F., Santos, M.F., Silva, Á., Machado, J., Abelha, A.: Enabling a pervasive approach for intelligent decision support in critical health care. In: Cruz-Cunha, M.M., Varajão, J., Powell, P., Martinho, R. (eds.) CENTERIS 2011, Part III. CCIS, vol. 221, pp. 233–243. Springer, Heidelberg (2011)
Portela, C.F., Santos, M.F., Silva, Á., Machado, J., Abelha, A., Rua, F.: Data mining for real-time intelligent decision support system in intensive care medicine (2013)
Santos, M.F., Portela, C.F., Vilas-Boas, M.: Intcare: multi-agent approach for real-time intelligent decision support in intensive medicine (2011)
Santos, M.F., Mathew, W., Portela, C.F.: Grid data mining for outcome prediction in intensive care medicine. In: Cruz-Cunha, M.M., Varajão, J., Powell, P., Martinho, R. (eds.) CENTERIS 2011, Part III. CCIS, vol. 221, pp. 244–253. Springer, Heidelberg (2011)
Boas, M.V., Santos, M.F., Portela, C.F., Silva, A., Rua, F.: Hourly prediction of organ failure and outcome in real time in Intensive Care Medicine (2010)
Portela, C.F., Santos, M.F., Silva, Á., Machado, J., Abelha, A.: Pervasive and intelligent decision support in critical health care using ensembles. In: Bursa, M., Khuri, S., Renda, M. (eds.) ITBAM 2013. LNCS, vol. 8060, pp. 1–16. Springer, Heidelberg (2013)
Braga, P., Portela, C.F., Santos, M.F.: Data mining models to predict patient’s readmission in Intensive care units. In: ICAART - International Conference on Agents and Artificial Intelligence (2014)
Veloso, R., Portela, C.F., Santos, M.F., Silva, Á., Rua, F., Abelha, A., Machado, J.: Categorize readmitted patients in intensive medicine by means of clustering data mining. Int. J. E-Health Med. Commun. (IJEHMC) (2015). (accepted for publication)
Veloso, R., Portela, C.F., Santos, M., Machado, J.M.F., Abelha, A., Silva, Á., Rua, F.: Real-time data mining models for predicting length of stay in intensive care units (2014)
Portela, C.F., Oliveira, S., Veloso, R., Santos, M.F., Abelha, A., Machado, J., Silva, Á., Rua, F.: Predict hourly patient discharge probability in intensive care units using data mining. ScienceAsia J. (ICCSCM 2014) (2014)
Oliveira, S., Portela, C.F., Santos, M.F.: Pervasive universal gateway for medical devices. In: Recent Advances in Electrical Engineering and Education Technologies (SCI 2014), pp. 205–210 (2014)
Hardin, J.M., Chhieng, D.C.: Data mining and clinical decision support systems. In: Berner, E.S., Facmi, F. (eds.) Clinical Decision Support Systems. Springer, New York (2007)
Portela, C.F., Pinto, F., Santos, M.F.: Data mining predictive models for pervasive intelligent decision support in intensive care medicine. In: INSTICC (ed.) KMIS 2012, Barcelona (2012)
Braga, A., Portela, C.F., Santos, M.F., Machado, J., Abelha, A., Silva, Á., Rua, F.: Data mining to predict the use of vasopressors in intensive medicine patients. Jurnal Teknolog, Penerbit UTM Press (2016). (accepted for publication)
Portela, C.F., Oliveira, S., Santos, M., Machado, J., Abelha, A.: A real-time intelligent system for tracking patient condition. In: Bravo, J., Hervás, R., Villarreal, V., Caro, L., Silva, C., Peralta, B., Herrera, O., Barrientos, S., et al. (eds.) AmIHEALTH 2015. LNCS, vol. 9456, pp. 91–97. Springer, Heidelberg (2015). doi:10.1007/978-3-319-26508-7_9
Portela, C.F., Gago, P., Santos, M.F., Machado, J., Abelha, A., Silva, Á., Rua, F.: Pervasive real-time intelligent system for tracking critical events in intensive care patients (2013)
Acknowledgments
This work has been supported by FCT - Fundação para a Ciência e Tecnologia within the Project Scope UID/CEC/00319/2013 and the contract PTDC/EEI-SII/1302/2012 (INTCare II).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Braga, A. et al. (2016). Real-Time Models to Predict the Use of Vasopressors in Monitored Patients. In: Zheng, X., Zeng, D., Chen, H., Leischow, S. (eds) Smart Health. ICSH 2015. Lecture Notes in Computer Science(), vol 9545. Springer, Cham. https://doi.org/10.1007/978-3-319-29175-8_2
Download citation
DOI: https://doi.org/10.1007/978-3-319-29175-8_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-29174-1
Online ISBN: 978-3-319-29175-8
eBook Packages: Computer ScienceComputer Science (R0)