Skip to main content

Real-Time Models to Predict the Use of Vasopressors in Monitored Patients

  • Conference paper
  • First Online:
Smart Health (ICSH 2015)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9545))

Included in the following conference series:

  • 2479 Accesses

Abstract

The needs of reducing human error has been growing in every field of study, and medicine is one of those. Through the implementation of technologies is possible to help in the decision making process of clinics, therefore to reduce the difficulties that are typically faced. This study focuses on easing some of those difficulties by presenting real-time data mining models capable of predicting if a monitored patient, typically admitted in intensive care, will need to take vasopressors. Data Mining models were induced using clinical variables such as vital signs, laboratory analysis, among others. The best model presented a sensitivity of 94.94 %. With this model it is possible reducing the misuse of vasopressors acting as prevention. At same time it is offered a better care to patients by anticipating their treatment with vasopressors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kaur, M., Pawar, M., Kohli, J.K., Mishra, S.: Critical events in intensive care unit. Indian J. Crit. Care Med.: Peer-reviewed Official Publ. Indian Soc. Critical Care Med. 12, 28 (2008)

    Article  Google Scholar 

  2. Silva, Á.J.B.M.D.: Modelos de intelegência artificial na análise da monitorização de eventos clínicos adversos, disfusão/falência de orgãos e prognóstico do doente crítico (2007)

    Google Scholar 

  3. Ramon, J., Fierens, D., Güiza, F., Meyfroidt, G., Blockeel, H., Bruynooghe, M., Van Den Berghe, G.: Mining data from intensive care patients. Adv. Eng. Inform. 21, 243–256 (2007)

    Article  Google Scholar 

  4. Portela, F., Santos, M.F., Abelha, A., Machado, J., Rua, F.M., Silva, Á.: Real-time decision support using data mining to predict blood pressure critical events in intensive medicine patients, 9456 (2015)

    Google Scholar 

  5. Elliott, J.: Alpha-adrenoceptors in equine digital veins: evidence for the presence of both alpha~1 and alpha~2-receptors mediating vasoconstriction. J. Vet. Pharmacol. Ther. 20, 308–317 (1997)

    Article  Google Scholar 

  6. Greenberg, H.B.: Cardiac arrhythmias: their mechanisms, diagnosis, and management. JAMA 246, 169 (1981)

    Article  Google Scholar 

  7. Portela, F., Santos, M., Machado, J., Abelha, A., Silva, Á., Rua, F.: Preventing patient cardiac arrhythmias by using data mining techniques. In: 2014 IEEE Conference on Biomedical Engineering and Sciences (2014)

    Google Scholar 

  8. Portela, F., Santos, M.F., Machado, J., Abelha, A., Silva, Á., Rua, F.: Pervasive and intelligent decision support in intensive medicine – the complete picture. In: Bursa, M., Khuri, S., Renda, M. (eds.) ITBAM 2014. LNCS, vol. 8649, pp. 87–102. Springer, Heidelberg (2014)

    Google Scholar 

  9. Portela, C.F., Santos, M.F., Silva, Á., Machado, J., Abelha, A.: Enabling a pervasive approach for intelligent decision support in critical health care. In: Cruz-Cunha, M.M., Varajão, J., Powell, P., Martinho, R. (eds.) CENTERIS 2011, Part III. CCIS, vol. 221, pp. 233–243. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  10. Portela, C.F., Santos, M.F., Silva, Á., Machado, J., Abelha, A., Rua, F.: Data mining for real-time intelligent decision support system in intensive care medicine (2013)

    Google Scholar 

  11. Santos, M.F., Portela, C.F., Vilas-Boas, M.: Intcare: multi-agent approach for real-time intelligent decision support in intensive medicine (2011)

    Google Scholar 

  12. Santos, M.F., Mathew, W., Portela, C.F.: Grid data mining for outcome prediction in intensive care medicine. In: Cruz-Cunha, M.M., Varajão, J., Powell, P., Martinho, R. (eds.) CENTERIS 2011, Part III. CCIS, vol. 221, pp. 244–253. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  13. Boas, M.V., Santos, M.F., Portela, C.F., Silva, A., Rua, F.: Hourly prediction of organ failure and outcome in real time in Intensive Care Medicine (2010)

    Google Scholar 

  14. Portela, C.F., Santos, M.F., Silva, Á., Machado, J., Abelha, A.: Pervasive and intelligent decision support in critical health care using ensembles. In: Bursa, M., Khuri, S., Renda, M. (eds.) ITBAM 2013. LNCS, vol. 8060, pp. 1–16. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  15. Braga, P., Portela, C.F., Santos, M.F.: Data mining models to predict patient’s readmission in Intensive care units. In: ICAART - International Conference on Agents and Artificial Intelligence (2014)

    Google Scholar 

  16. Veloso, R., Portela, C.F., Santos, M.F., Silva, Á., Rua, F., Abelha, A., Machado, J.: Categorize readmitted patients in intensive medicine by means of clustering data mining. Int. J. E-Health Med. Commun. (IJEHMC) (2015). (accepted for publication)

    Google Scholar 

  17. Veloso, R., Portela, C.F., Santos, M., Machado, J.M.F., Abelha, A., Silva, Á., Rua, F.: Real-time data mining models for predicting length of stay in intensive care units (2014)

    Google Scholar 

  18. Portela, C.F., Oliveira, S., Veloso, R., Santos, M.F., Abelha, A., Machado, J., Silva, Á., Rua, F.: Predict hourly patient discharge probability in intensive care units using data mining. ScienceAsia J. (ICCSCM 2014) (2014)

    Google Scholar 

  19. Oliveira, S., Portela, C.F., Santos, M.F.: Pervasive universal gateway for medical devices. In: Recent Advances in Electrical Engineering and Education Technologies (SCI 2014), pp. 205–210 (2014)

    Google Scholar 

  20. Hardin, J.M., Chhieng, D.C.: Data mining and clinical decision support systems. In: Berner, E.S., Facmi, F. (eds.) Clinical Decision Support Systems. Springer, New York (2007)

    Google Scholar 

  21. Portela, C.F., Pinto, F., Santos, M.F.: Data mining predictive models for pervasive intelligent decision support in intensive care medicine. In: INSTICC (ed.) KMIS 2012, Barcelona (2012)

    Google Scholar 

  22. Braga, A., Portela, C.F., Santos, M.F., Machado, J., Abelha, A., Silva, Á., Rua, F.: Data mining to predict the use of vasopressors in intensive medicine patients. Jurnal Teknolog, Penerbit UTM Press (2016). (accepted for publication)

    Google Scholar 

  23. Portela, C.F., Oliveira, S., Santos, M., Machado, J., Abelha, A.: A real-time intelligent system for tracking patient condition. In: Bravo, J., Hervás, R., Villarreal, V., Caro, L., Silva, C., Peralta, B., Herrera, O., Barrientos, S., et al. (eds.) AmIHEALTH 2015. LNCS, vol. 9456, pp. 91–97. Springer, Heidelberg (2015). doi:10.1007/978-3-319-26508-7_9

    Chapter  Google Scholar 

  24. Portela, C.F., Gago, P., Santos, M.F., Machado, J., Abelha, A., Silva, Á., Rua, F.: Pervasive real-time intelligent system for tracking critical events in intensive care patients (2013)

    Google Scholar 

Download references

Acknowledgments

This work has been supported by FCT - Fundação para a Ciência e Tecnologia within the Project Scope UID/CEC/00319/2013 and the contract PTDC/EEI-SII/1302/2012 (INTCare II).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filipe Portela .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Braga, A. et al. (2016). Real-Time Models to Predict the Use of Vasopressors in Monitored Patients. In: Zheng, X., Zeng, D., Chen, H., Leischow, S. (eds) Smart Health. ICSH 2015. Lecture Notes in Computer Science(), vol 9545. Springer, Cham. https://doi.org/10.1007/978-3-319-29175-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29175-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29174-1

  • Online ISBN: 978-3-319-29175-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics