Abstract
In this paper, we present a 2-factor approximation algorithm for the maximum independent set problem on a unit disk graph, where the geometric representation of the graph has been given. We use dynamic programming and farthest point Voronoi diagram concept to achieve the desired approximation factor. Our algorithm runs in \(O(n^2\log n)\) time and \(O(n^2)\) space, where n is the input size. We also propose a polynomial time approximation scheme (PTAS) for the same problem. Given a positive integer k, it can produce a solution of size \(\frac{1}{(1+\frac{1}{k})^2}|OPT|\) in \(n^{O(k)}\) time, where |OPT| is the optimum size of the solution. The best known algorithm available in the literature runs in (i) \(O(n^3)\) time and \(O(n^2)\) space for 2-factor approximation, and (ii) \(n^{O(k \log k)}\) time for PTAS [Das, G.K., De, M., Kolay, S., Nandy, S.C., Sur-Kolay, S.: Approximation algorithms for maximum independent set of a unit disk graph. Information Processing Letters 115(3), 439–446 (2015)].
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Agarwal, P., van Kreveld, M., Suri, S.: Label placement by maximum independent set in rectangles. Comput. Geom. 11(3), 209–218 (1998)
Chan, T.M.: Polynomial-time approximation schemes for packing and piercing fat objects. J. Algorithms 46(2), 178–189 (2003)
Chan, T.M., Har-Peled, S.: Approximation algorithms for maximum independent set of pseudo-disks. Discrete Comput. Geom. 48(2), 373–392 (2012)
Das, G.K., De, M., Kolay, S., Nandy, S.C., Sur-Kolay, S.: Approximation algorithms for maximum independent set of a unit disk graph. Inf. Process. Lett. 115(3), 439–446 (2015)
De Berg, M., Van Kreveld, M., Overmars, M., Schwarzkopf, O.C.: Computational Geometry. Springer, Heidelberg (2000)
Erlebach, T., Jansen, K., Seidel, E.: Polynomial-time approximation schemes for geometric intersection graphs. SIAM J. Comput. 34(6), 1302–1323 (2005)
Garey, M., Johnson, D.: Computers and intractability: a guide to the theory of NP-completeness. Freeman, New York (1979)
Halldórsson, M.M.: Approximating discrete collections via local improvements. In: Proceedings of the Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 160–169. Society for Industrial and Applied Mathematics (1995)
Hochbaum, D.S., Maass, W.: Approximation schemes for covering and packing problems in image processing and VLSI. J. ACM (JACM) 32(1), 130–136 (1985)
van Leeuwen, E.J.: Approximation algorithms for unit disk graphs. In: Kratsch, D. (ed.) WG 2005. LNCS, vol. 3787, pp. 351–361. Springer, Heidelberg (2005)
Marathe, M.V., Breu, H., Hunt, H.B., Ravi, S.S., Rosenkrantz, D.J.: Simple heuristics for unit disk graphs. Networks 25(2), 59–68 (1995)
Matsui, T.: Approximation algorithms for maximum independent set problems and fractional coloring problems on unit disk graphs. In: Akiyama, J., Kano, M., Urabe, M. (eds.) JCDCG 1998. LNCS, vol. 1763, pp. 194–200. Springer, Heidelberg (2000)
Nieberg, T., Hurink, J.L., Kern, W.: A robust PTAS for maximum weight independent sets in unit disk graphs. In: Hromkovič, J., Nagl, M., Westfechtel, B. (eds.) WG 2004. LNCS, vol. 3353, pp. 214–221. Springer, Heidelberg (2004)
Preparata, F.P., Shamos, M.: Computational Geometry: An Introduction. Springer Science & Business Media, New York (2012)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Jallu, R.K., Das, G.K. (2016). Improved Algorithm for Maximum Independent Set on Unit Disk Graph. In: Govindarajan, S., Maheshwari, A. (eds) Algorithms and Discrete Applied Mathematics. CALDAM 2016. Lecture Notes in Computer Science(), vol 9602. Springer, Cham. https://doi.org/10.1007/978-3-319-29221-2_18
Download citation
DOI: https://doi.org/10.1007/978-3-319-29221-2_18
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-29220-5
Online ISBN: 978-3-319-29221-2
eBook Packages: Computer ScienceComputer Science (R0)