Skip to main content

Medians of Permutations: Building Constraints

  • Conference paper
Algorithms and Discrete Applied Mathematics (CALDAM 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9602))

Included in the following conference series:

Abstract

Given a set \(\mathcal {A}\subseteq {\mathcal S}_n\) of m permutations of [n] and a distance function d, the median problem consists of finding a permutation \(\pi ^*\) that is the “closest” of the m given permutations. Here, we study the problem under the Kendall-\(\tau \) distance which counts the number of pairwise disagreements between permutations. This problem has been proved to be NP-hard when \(m \ge 4\), m even. In this article, we investigate new theoretical properties of \(\mathcal {A}\) that will solve the relative order between pairs of elements in median permutations of \(\mathcal {A}\), thus drastically reducing the search space of the problem.

supported by NSERC through an Individual Discovery Grant (Hamel) and by FRQNT through a Master’s scholarship (Milosz).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Proof available here: http://www-etud.iro.umontreal.ca/miloszro/caldam/caldam.html

  2. 2.

    http://www-etud.iro.umontreal.ca/miloszro/caldam/caldam.html.

References

  1. Ailon, N., Charikar, M., Newman, N.: Aggregating inconsistent information: ranking and clustering. J. ACM 55(5), 1–27 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Betzler, N., Bredereck, R., Niedermeier, R.: Theoretical and empirical evaluation of data reduction for exact kemeny rank aggregation. Auton. Agent. Multi-Agent Syst. 28, 721–748 (2014)

    Article  Google Scholar 

  3. Betzler, N., et al.: Average parameterization and partial kernelization for computing medians. J. Comput. Syst. Sci. 77(4), 774–789 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Biedl, T.C., Brandenburg, F.J., Deng, X.: Crossings and permutations. In: Healy, P., Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 1–12. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  5. Blin, G., Crochemore, M., Hamel, S., Vialette, S.: Median of an odd number of permutations. Pure Math. Appl. 21(2), 161–175 (2011)

    MathSciNet  MATH  Google Scholar 

  6. Dwork, C., Kumar, R., Naor, M., Sivakumar, D.: Rank aggregation methods for the web. In: Proceedings of the 10th WWW, pp. 613–622 (2001)

    Google Scholar 

  7. Fisher, R.A., Yates, F.: Statistical Tables for Biological, Agricultural, Medical Research, 3rd edn., pp. 26–27. Oliver & Boyd, London (1948)

    Google Scholar 

  8. Karpinski, M., Schudy, W.: Faster algorithms for feedback arc set tournament, kemeny rank aggregation and betweenness tournament. In: Cheong, O., Chwa, K.-Y., Park, K. (eds.) ISAAC 2010, Part I. LNCS, vol. 6506, pp. 3–14. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  9. Kemeny, J.: Mathematics without numbers. Daedalus 88, 577591 (1959)

    Google Scholar 

  10. Kendall, M.: A new measure of rank correlation. Biometrika 30, 81–89 (1938)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kenyon-Mathieu, C., Schudy, W.: How to rank with few errors, STOC 2007, pp. 95–103 (2007)

    Google Scholar 

  12. Knuth, D.E.: Seminumerical algorithms, The Art of Computer Programming 2. Reading, MA, : AddisonWesley, pp. 124–125 (1969)

    Google Scholar 

  13. Nishimura, N., Simjour, N.: Parameterized enumeration of (locally-) optimal aggregations. In: Dehne, F., Solis-Oba, R., Sack, J.-R. (eds.) WADS 2013. LNCS, vol. 8037, pp. 512–523. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  14. Simjour, N.: Improved parameterized algorithms for the kemeny aggregation problem. In: Chen, J., Fomin, F.V. (eds.) IWPEC 2009. LNCS, vol. 5917, pp. 312–323. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  15. Truchon, M.: An Extension of the Condorcet Criterion and Kemeny Orders. Internal report, Université Laval, p. 16 (1998)

    Google Scholar 

  16. vanZuylen, A., Williamson, D.P.: Deterministic pivoting algorithms for constrained ranking and clustering problems. Math. Oper. Res. 34(3), 594–620 (2009)

    Google Scholar 

Download references

Acknowledgements

Thanks to Bryan Brancotte, Sarah Cohen-Boulakia and Alain Denise (LRI - Paris Sud) for giving us useful advices and thoughts to guide the work. Thanks to Nicole Burke (Montreal) for a careful english revision of the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvie Hamel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Milosz, R., Hamel, S. (2016). Medians of Permutations: Building Constraints. In: Govindarajan, S., Maheshwari, A. (eds) Algorithms and Discrete Applied Mathematics. CALDAM 2016. Lecture Notes in Computer Science(), vol 9602. Springer, Cham. https://doi.org/10.1007/978-3-319-29221-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29221-2_23

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29220-5

  • Online ISBN: 978-3-319-29221-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics