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Abstract. Many complex systems obey to optimality conditions that
are usually not simple. Conflicting traits often interact making a Multi
Objective Optimization (MOO) approach necessary. Recent MOO re-
search on complex systems report about the Pareto front (optimal de-
signs implementing the best trade-off) in a qualitative manner. Mean-
while, research on traditional Simple Objective Optimization (SOO) of-
ten finds phase transitions and critical points. We summarize a robust
framework that accounts for phase transitions located through SOO tech-
niques and indicates what MOO features resolutely lead to phase transi-
tions. These appear determined by the shape of the Pareto front, which
at the same time is deeply related to the thermodynamic Gibbs sur-
face. Indeed, thermodynamics can be written as an MOO from where
its phase transitions can be parsimoniously derived; suggesting that the
similarities between transitions in MOO-SOO and Statistical Mechanics
go beyond mere coincidence.

Keywords: multiobjective optimization, Pareto optimality, phase tran-
sitions, statistical mechanics, thermodynamics

1 Introduction

Optimization has always been a major topic in complex systems research. Op-
timality conditions are relevant for a wealth of biological [1], [2], [3], [4], [5] and
other natural and synthetic systems [6], [7], [8], [9], [10]. Evolution through nat-
ural selection is a main driver of biological systems towards optimal designs [11]
[12] and certain physical principles (e.g. maximum entropy or optimal diffusion
structures) already introduce a bias towards functional extrema. Human-made
systems are equally constrained through cost-efficiency calculations – e.g. in
transportation networks [9], [10].

Describing these situations requires optimal designs that often cope with
interacting constraints. To give a good account of these selective forces, a Pareto
or Multi Objective Optimization (MOO) approach can be useful. Let us introduce
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this theory through a recent relevant example [13]. (Technical definitions follow
below.) Consider the set (Γ ) of all connected networks with a fixed number of
nodes (γ ∈ Γ , figure 1a). Among them we seek those minimizing the average
path length 〈l〉 (γ) and the number of edges ρ(γ). These are the target functions
(Tf (γ) ≡ {t1 = 〈l〉 (γ), t2 = ρ(γ)}) of our MOO problem. A fully connected
clique minimizes the average path length, but we need to implement all possibles
links, which is costly. The minimum spanning tree has the least number of edges
possible but its average path length is quite large. Take networks γ1 and γ2
trading between these extremes and such that 〈l〉 (γ1) < 〈l〉 (γ2) and ρ(γ1) <
ρ(γ1). This means that γ1 implements a better tradeoff than γ2 and we say then
that γ1 dominates γ2 (figure 1c). A network (γπ ∈ Π) ⊂ Γ not dominated by
any other γ ∈ Γ is Pareto optimal. Often we cannot choose between a pair of
networks because one is better than the other with respect to a target and worst
with respect to the other – i.e. they are mutually not dominated. Because this
situation is common, MOO solutions are often not a single global optimizer,
but the collection of Pareto optimal (mutually non- dominated) networks that
implement the most optimal tradeoff possible. We name this Pareto optimal set
Π ⊂ Γ .

Target functions map each network γ ∈ Γ into a point of R2: (〈l〉 (γ), ρ(γ)).
This plane, with the relevant traits in its axes, constitutes a morphospace in
which salient network topologies are located as a function of their morphology
[14] (figure 1b). Morphospace of other systems visualize phenotypes or designs
with respect to relevant properties. The Pareto optimal set is mapped onto Tf (Π)
and constitutes a boundary of the morphospace (figure 1b-c). also known as the
Pareto front.

Some authors are beginning to explore the consequences of Pareto optimal-
ity in biological systems [3], [4], [5] or in relevant models such as networks [15],
[16] or regulatory circuits [5], [17]. While they tackle relevant questions through
MOO methods, the description of these optimal designs is often a qualitative
account of the elements along the Pareto front (as in the study of a restricted
morphospace – an interesting contribution nevertheless). The same qualitative
bias appears in classic MOO literature. Is a more quantitative analysis possible?
Are there universal features that reach through different MOO problems, thus
uniting Pareto optimal systems despite their differences? Through our research
[18] (sketched in section 2) we have found a connection between MOO and
statistical mechanics. Those universal features we were looking for are phase
transitions and critical points, which leave clear imprints in the shape of the
Pareto front. Some authors had explored MOO with Single Objective Optimiza-
tion (SOO) methods – e.g. by integrating all targets linearly to define a global
energy function Ω(Λ) =

∑
k λktk, with Λ = {λ1, . . . , λk} arbitrary parameters

that introduce a bias towards some of the targets. Such research often finds
phase transitions and other phenomena [8], [10]. A parsimonious theory lacked
as to why some systems would present such transitions and others would not.

To the best of our knowledge, authors researching MOO do not exploit this
connection with thermodynamics which, we believe, much enriches the discus-
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sion of Pareto optimal designs. Two relevant examples from network theory:
The efficiency of different topologies has been researched for the relay of in-
formation across a network using two distinct delivery heuristics [15]. It was
made an exhaustive work in describing network topologies and locating them
in a morphospace in which different network features are segregated. In that
same morphospace, the Pareto fronts in [15] strongly indicate the presence of
first and second order phase transitions. If the information theoretical aspect
of the diffusion of messages across the network is considered, those transitions
might become thermodynamically relevant. Similarly, the tradeoff of topological
robustness when random or targeted nodes are taken away results in a Pareto
front [16]. Under the light of our findings, second order transitions are present
show up in that study. Also a first order transition exists that vanishes as the
average degree of the network changes, suggesting a critical point. We further
illustrate our findings with other two examples in section 2.1.

A theory about phase transitions must fit within thermodynamics. For us,
this is achieved due to the equivalence between the Pareto front and the Gibbs
surface [18], [19], [20], an object known to embody phase transitions in its con-
cavities and non-analyticities. We discuss thermodynamics in section 3.1, not
because our theory modifies previous knowledge about it, of course, but because
in showing that phase transitions arise in thermodynamics precisely in the same
way as in MOO, we place our findings for MOO on very solid ground.

2 Theoretical Framework

In this section we expand the loose introduction of MOO above. More details
and methods can be found in the exhaustive literature [21], [22], [23], [24], [25].
We assume minimization unless indicated otherwise.

Consider a set X of possible designs x ∈ X. In the example above, X = Γ
is made of network designs. This will be used again later, along with another
example in which X = A stands for all possible languages a ∈ A derived from
a mathematical computational model of human communication [8]. Within X
we seek those optimal designs (xπ ∈ Π) ⊂ X that simultaneously minimize a
series of target functions (Tf ≡ {t1, . . . , tK}). These tk ∈ Tf map each design
x ∈ X into target space (Tf (x) = {t1(x), . . . , tK(x)} ∈ RK), a morphospace of
the system under research.

Pareto dominance is defined in this target space. Take x, z ∈ X. x dominates
z (noted x ≺ z) if tk(x) ≤ tk(z) for all k and tk′(x) < tk′(z) for at least one k′.
This means that x is objectively better than z. If given two designs (x, y ∈ X)
none dominates the other (x ⊀ y ⊀ x), we cannot chose one of them without
introducing a bias towards some of the target functions. Pareto optimality is
solved by putting choices between mutually non-dominated designs on hold.

The Pareto optimal set Π ⊂ X is such that every element z ∈ X, z /∈ Π
is dominated by some x ∈ Π while any x, y ∈ Π are mutually non-dominated.
The projection Tf (Π) conforms a (D ≤ K − 1)-dimensional surface in RK that
embodies the most optimal tradeoff possible between the targets. Moving along
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Fig. 1. Phase transitions in Pareto optimal systems. a In a design space of
complex networks a set of weighted target functions defines a global energy (equation
1) and renders a potential landscape (explored in [18], [13]). b Those same targets map
the design space into the target space. The set of Pareto optimal designs is mapped
onto a boundary of this morphoscpace: the Pareto front, which represents the most
optimal tradeoff between the targets. c The concept of dominance is geometrically
simple in target space. d Energy minimization for fixed λ returns a single point of the
Pareto front. Changing λ we visit different solutions. Depending on the shape of the
Pareto front, second (e) and first (f) order phase transitions arise as a function of λ.
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the front it is impossible to improve all targets at once: an increment in at least
one tk is necessary if we wish to decrease some other tk′ .

We sketch now the basic situations of our theoretical framework that connects
the Pareto front and thermodynamics. We refer the reader to [18] for a more
exhaustive discussion.

The simplest SOO problem that includes all MOO targets defines a linear
global energy function:

Ω(x,Λ) =
∑
k

λktk(x), (1)

where Λ ≡ {λk; k = 1, ...,K} are parameters that bias the optimization towards
some of the targets. We say that equation 1 has collapsed the MOO into an SOO.
A set Λ with fixed values λk defines one single SOO, thus equation 1 (with free
λk) produces indeed a family of SOOs whose members are parameterized through
Λ. We will study: those SOOs, the constraints that the Pareto front imposes to
their solutions, and the relationships between different SOOs of the same family.
The validity of the results holds for any positive, real set Λ. For convenience,
though: i) We take K = 2, which simplifies the graphic representations and
contains the most relevant cases. ii) We require

∑
k λk = 1 without loss of

generality. For K = 2 then λ1 = λ, λ2 = 1− λ, and Ω = λt1 + (1− λ)t2. iii) We
impose λk 6= 0 ∀k, thus λ ∈ (0, 1). Comments about fringe cases can be found
in [18].

As said above, for given λk one fixed SOO problem is posed. Then, equation
1 with fixed Ω defines equifitness surfaces noted τΛ(Ω). Each τΛ(Ω) constitutes
a (K − 1)-dimensional hyperplane in target space. For K = 2 these surfaces
become straight lines (figure 1b):

τλ(Ω) ≡
{

(t1, t2)| t2 =
Ω

1− λ
− λ

1− λ
t1

}
. (2)

The slope of τλ(Ω) along each possible direction t̂k in the target space only
depends on λ (here, dt2/dt1 = −λ/(1 − λ)). Different τλ(Ω) for fixed λ are
parallel to each other. The crossing of τλ(Ω) with each axis is proportional
to Ω (from equation 2, the crossings with the horizontal and vertical axes read:
Ω/(1−λ) and Ω/λ). For a given SOO (constant λ), minimizing Ω means finding
τλ(Ω̃) with Ω̃ the lowest value possible such that τλ(Ω̃) still intersects the Pareto
front (figure 1d). This is equivalent to pushing the equifitness surfaces against
the Pareto front as much as possible thus lowering the crossings with the axes.

The SOO optimum xλ ∈ Π lays at the point Tf (xλ) at which τλ(Ω̃) is
usually tangent to the front (figure 1d). The exceptions to this rule are the most
interesting cases. The solutions to different SOOs (defined by different values of
λ) are found in different points along the front. For λ ∈ (0, 1), equifitness surfaces
present a slope −λ/(1−λ) = d ∈ (−∞, 0) (d decreases as λ increases). Consider
now differentially small modifications of λ. This allows us to drift infinitesimally
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slow through the SOO family. We could expect that solutions between different
SOOs will change so gradually as well, but that is not always the case.

The front in figure 1d is convex (with respect to the optimization direction
determined by λ ∈ (0, 1)). Its slope spans the whole range d ∈ (−∞, 0). This
guarantees that, as we drift through λ, each different SOO problem has one
characteristic solution laying exactly where the equifitness surface is tangent to
the front. We can sample the front smoothly, thus anything that we measure on
the SOO solutions (i.e. any order parameter) will be a smooth function of λ as
well. Convex Pareto fronts whose slope span the whole range d ∈ (−∞, 0) do
not present any accident.

Consider now the case in figure 1e. It represents a convex front whose slope
spans d ∈ (−∞, d∗ < 0). For λ ∈ (λ∗ ≡ −d∗/(1 − d∗), 1), we can pose different
SOOs whose solutions lay at different points of the convex part of the front.
Varying λ within this interval renders a smooth sample of SOO solutions. How-
ever, for λ ∈ (0, λ∗) we can pose different SOOs whose solution lays exactly at
the same place, as indicated by the gray fan in figure 1c. If we measure anything
about the SOO solutions, that quantity will be constant as a function of λ for
λ ∈ (0, λ∗) because we will persistently measure a property of the same design.
That same property will vary smoothly over λ ∈ (λ∗, 1). At λ∗ this quantity will
be continuous but its derivative will not (figure 1e, inset), as in second order
phase transitions. In cases like this we say that the Pareto front ends abruptly
at one of its extremes. Second order transitions also happen if the slope of the
front spans d ∈ (d∗ > −∞, 0) (i.e. if the opposite end of the front terminates
abruptly) or if d ∈ (−∞, d∗−) ∪ (d∗+, 0) (i.e. the front presents a sharp edge with
an ill-defined derivative).

A cavity in the front leads to first order phase transitions. At either side
of the cavity in figure 1f we find convex stretches whose points represent dif-
ferent solutions for different SOO problems posed by different λ ∈ (0, λ∗) or
λ ∈ (λ∗, 1). But right at λ = λ∗ (represented by the straight red line of figure
1d) two solutions are SOO optima at the same time. This is a phase coexistence
phenomenon characteristic of first order transitions. Pareto optimal solutions
laying inside the cavity are bypassed and never get to be SOO optima. If we
measure an oder parameter of the SOO solutions as a function of λ (figure 1f,
inset), we find a gap resulting from the abrupt shift from one convex stretch of
the front to the other at λ = λ∗.

2.1 Phase Transitions in Pareto Optimal Designs

As examples, we choose two problems that have recently been treated from an
optimization perspective. Take Complex Networks first, which are good models
of a series of natural systems such as vascular or nervous circuits [1], [2] that
might be constrained by physical costs (available material) while seeking the
efficient implementation of biological function (e.g. distribution of nutrients).
Some human made structures, such as transportation networks [9], would also
benefit from optimal design.
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Fig. 2. Pareto optimal networks with nodes spaced over a circle. A genetic
algorithm was used to approximate the Pareto front (blue crosses and thick brown
curve) of networks that minimize the average path length and the cost of their links. a
The front implements a tradeoff between the clique and the minimum spanning tree.
(Inset) The clique extreme of the front ends abruptly (see [18]) indicating a second
order phase transition. b A cavity is revealed at the center of the front, which implies
a first order phase transition. c Both transitions are revealed in the plot of any order
parameter. (Second order at λ∗

2 ' 0.59, first oder at λ∗
1 ' 0.34.)

In [13] we consider this problem to a greater extent. We take the cost ρ(γ)
of network γ as a function of its edges (number or length) and its efficiency is
accounted for by the average path length 〈l〉 (γ), a naive proxy for how fast mes-
sages can be relayed across the network. These are the targets for minimization
(Tf = {t1 ≡ ρ(γ), t2 ≡ 〈l〉 (γ)}) that lead to a Pareto front and, depending on
its shape, to phase transition and other interesting phenomena. In figure 2a we
represent the front for such an MOO along with some Pareto optimal networks.
In this example the nodes are spaced over a circle and the cost of each link is
proportional to its Euclidean distance. This front ends abruptly (figure 2a, inset)
and a cavity is present (figure 2b, see [13] for discussion). This implies, corre-
spondingly, a second and a first order transitions at λ∗2 ' 0.59 and at λ∗1 ' 0.34.
These transitions can be noted in the plot of any order parameter (figure 2c).

Our second example explores the evolutionary constraints of human language,
an unsettled challenge for the scientific community. The optimization of linguistic
structures brings together universal language properties (such as Zipf’s law) and
the presence of ambiguity, likely as a compromise between language economy and
a large ability to talk about the outer world [26]. Such a tension was proposed by
Zipf himself [6] and its mathematical formalization [8] leads to an MOO problem
that was always treated as an SOO. Accordingly, phase transitions were readily
identified but some debate lasted concerning its nature and meaning [27]. In [8],
languages a ∈ A are modeled through a set of signals S and objects R whose
associations are encoded in a matrix a = {aij} with aij = 1 if signal si ∈ S names
object rj ∈ R and 0 otherwise. This binary matrix presents many ones in a row
if a signal is polysemous and many ones in a column if several words name the
same object – i.e. if there are any synonymous. Every object is recalled equally
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often and, if an object has many names, a speaker chooses uniformly among
these when necessary. Two quantities are relevant (see [8]): i) one entropy hH(a)
associated to the uncertainty of a message when a hearer has to decode it – i.e.
what object it is meant after the speaker has uttered a signal; and ii) another
entropy hS(a) associated to the speaker choosing the right word to name an
object among those available. A speaker might be allowed to be vague (as in
“it” referring to any object) or she might be requested to be specific (perhaps
finding the precise technicism in a scientific context).

Fig. 3. Least effort languages. a Arbitrary Pareto optimal languages (blue crosses)
lay on the straight line t2 = 1− t1. A straight front is a sign of criticality along a first
order phase transition scenario. Either phase represents respectively the best scenario
for the speaker (λ < λc, where communication is impossible unless through the context)
and for the hearer (λ > λc, with high memory demands). Only at the critical point is
a wide complexity available. Any order parameter (b, mutual information between the
signals and the external world; c, effective vocabulary size) reflects the phase transition.

These two entropies represent the effort made by hearers or speakers when
using a language. They act as minimization targets (Tf = {t1 ≡ hH(a), t2 ≡
hS(a)}), so that languages a ∈ A are subjected to a MOO. A subset (aπ ∈
Π) ⊂ A of object-signal associations implements the Pareto front, the optimal
tradeoff between the efforts of a hearer and a speaker. This front is a straight
line in target space (figure 3a). Attending to the theory sketched above this
is akin to a first order phase transition (see [18]) with one end of the front
being the global optimum for λ < λc and the other extreme of the front being
optimum for λ > λc. Right at λ = λc, a sudden jump happens between these
two, very distinct phases. This can be appreciated in any order parameter as
a sharp discontinuity (figure 3b, c). The extremes correspond to i) a language
that minimizes the speaker’s efforts for λ < λc (one single signal names every
object, as in the “it” example before, so that the speaker does not need to think
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the right association every time) and ii) a language that minimizes the hearer’s
effort for λ > λc, with perfect pairings between signals and objects so that there
is not any ambiguity when decoding the messages.

Communication is difficult in both extremes, either because the signals con-
vey little information about the objects (λ < λc, figure 3b), or because of the
memory needs to browse a vast vocabulary (λ > λc, figure 3c). Besides, we know
that more complicated structures exist in real languages. These structures can be
found right at λ = λc. A straight Pareto front is an indication of criticality ([18],
[28]). In such cases, exactly at the critical value λc, the whole front is also SOO
optimal. Note that in usual first order transitions those solutions laying at the
cavity are skipped altogether, while here a plethora of them becomes available.
In [27] the authors proved that the global SOO minimizers at λ = λc consist of
all possible languages without synonyms, hence these must constitute the Pareto
front. More importantly, among these possible languages it exists one such that
the frequency of the signals obeys Zipf’s law, as in natural human languages.

3 Discussion

3.1 Thermodynamics as an MOO-SOO Problem

Thermodynamics is one of the best established branches of physics and dates
back to more than two centuries ago. In its modern form – as statistical mechan-
ics – it allows us to make precise predictions about diverse macroscopic physical
phenomena. Its applications extend beyond physics, as complex systems are in-
creasingly being investigated through maximum entropy models [29], [30]. In [18]
we rewrite thermodynamics as an MOO-SOO problem, not to suggest that our
theoretical framework modifies it in any way. Rather the opposite: By checking
that our framework reproduces a robust physical theory, we strand our findings
in a more solid ground.

Phase transitions in complex systems often raise heated debate: being strict,
phase transitions are defined for thermodynamics alone, through partition func-
tions, and involve fluctuations that compel us to take a thermodynamic limit.
Little can be done against such epistemological stand. This is yet another reason
why we undertake the task of writing thermodynamics as an MOO-SOO. Such a
formalization of statistical mechanics reproduces all the results concerning phase
transitions in the exact same way that transitions arise in other MOO-SOO sce-
narios. We suggest and support that the phase transition phenomenology arising
in other MOO-SOO systems is more than a qualitative similarity.

The argument is not repeated here because of space constraints, but the
idea is to show that the independent, simultaneous minimization of internal en-
ergy and maximization of entropy leads to a Pareto front subjected to the phe-
nomenology found in section 2. In thermodynamics we deal with given physical
systems that cannot be modified. We test probabilistic descriptions that tell us
how likely it is to find the system in each part of its phase space. We wonder
which of these descriptions present a lower internal energy and larger entropy.
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Thus our design space X is the set of all possible probabilistic descriptions of
the system under research. From that optimization we obtain a Pareto front
whose shape (through cavities) and differential geometry (through sharp edges)
imply phase transitions if the targets (t1 ≡ U , t2 ≡ S) were collapsed into an
SOO problem. But that is precisely what happens in equilibrium thermodynam-
ics through the minimization of the free energy F = U − TS [20]. We identify
Ω ≡ F , λ1 ≡ 1, and λ2 ≡ −T , and the theory exposed above applies with
transitions at singular temperature values.

We insist that the optimization operates upon probabilistic descriptions of
the thermodynamic species – while the shape of the front is determined by the
properties of the physical system. It might be interesting to segregate what
thermodynamic phenomenology happens because thermodynamic systems are
probabilistic ensembles (in this regard they are unlike Pareto optimal networks
or least effort languages, as much as networks and languages are unlike each
other) and what phenomenology arises because of the shape of a Pareto front
(that would yield the same phenomenology irrespective of the kind of designs
considered – were they networks or languages – as long as the front had the same
shape).

This interpretation of statistic-mechanical systems is illustrated with two
very simple examples with first and second order transitions and one critical
point in [18]. As stated above, this is not to prove new thermodynamic results,
but to provide more solid basis for this theory regarding MOO-SOO situations.
Indeed, the role of cavities in first order phase transitions dates back to Gibbs
[19], [20], whose Gibbs surface represented the states of a thermodynamic species.
That surface is associated to the microcanonical ensemble [18] and may be con-
cave or convex. Its convex hull is associated to the canonical ensemble (hence
to equilibrium at given temperature through free energy minimization), which
is always convex. At cavities in the Gibbs surface, the description of both en-
sembles must differ (as noted by the theory of ensemble inequivalence [31]) and
first order transitions occur.

3.2 Closing Remarks

With our recent findings [18] we close a gap between the MOO literature, re-
search on SOO tradeoffs, and statistical mechanics. On the one hand, standard
MOO analysis does not take into account phenomena like phase transitions or
criticality which, we believe, add up to our knowledge and enrich the description
of Pareto optimal designs. On the other hand, analyses of the Pareto front are of-
ten qualitative or based on subjective appreciations of its shape. The formalism
developed in section 2 allows us to locate quantitatively very relevant details
of the systems under research. These features shall persist under transforma-
tions of the targets and, if not, the qualitative description would tell us how do
these phenomena disappear. Furthermore, a solid connection to thermodynamics
has been established. We are pretty confident of the immutable, lasting nature
of thermodynamics; thus we can guess that, through the Pareto formalism, we
have located broad features that unite the description of diverse MOO problems.
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A prominent field for MOO application is biology [3], [4], [5]. Thermodynamic-
like phenomenology is not discussed in these references, but the stage looks great:
Is there a place for true MOO in biology? Against this, natural selection concerns
itself with fitness maximization alone. This feels like an exciting MOO-SOO pic-
ture, but we cannot guarantee linear global functions as in equation 1. Beyond
linearity, new phenomenology might be uncovered.

Finally, an important, though conceptually difficult issue was left aside in [18]
and only incidentally dealt with here. How do critical systems look like under
an MOO perspective? Can we recover the astounding phenomena of criticality?
This will be tackled in future work [28]. Other theoretical aspects of MOO remain
open to research.
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15. Goñi, J., Avena-Koenigsberger, A., de Menizabal, N.V., van den Heuvel M., Betzel,
R., Sporns, O.: Exploring the morphospace of communication efficiency in complex
networks. PLoS ONE 8, e58070 (2013).

16. Priester, C., Schmitt, S., Peixoto, T.P.: Limits and Trade-Offs of Topological Net-
work Robustness. PLoS ONE 9(9), e108215 (2014).

17. Otero-Muras, I., Banga, J.R.: Multicriteria global optimization for biocircuit de-
sign. BMC Syst. Biol. 8, 113 (2014).
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