Abstract
Many complex systems obey to optimality conditions that are usually not simple. Conflicting traits often interact making a Multi Objective Optimization (MOO) approach necessary. Recent MOO research on complex systems report about the Pareto front (optimal designs implementing the best trade-off) in a qualitative manner. Meanwhile, research on traditional Simple Objective Optimization (SOO) often finds phase transitions and critical points. We summarize a robust framework that accounts for phase transitions located through SOO techniques and indicates what MOO features resolutely lead to phase transitions. These appear determined by the shape of the Pareto front, which at the same time is deeply related to the thermodynamic Gibbs surface. Indeed, thermodynamics can be written as an MOO from where its phase transitions can be parsimoniously derived; suggesting that the similarities between transitions in MOO-SOO and Statistical Mechanics go beyond mere coincidence.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
West, G.B., Brown, J.H., Enquist, B.J.: A general model for the structure and allometry of plant vascular systems. Nature 400, 664–667 (1999)
Pérez-Escudero, A., de Polavieja, G.G.: Optimally wired subnetwork determines neuroanatomy of Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 104(43), 17180–17185 (2007)
Shoval, O., Sheftel, H., Shinar, G., Hart, Y., Ramote, O., Mayo, A., Dekel, E., Kavanagh, K., Alon, U.: Evolutionary tradeoffs, Pareto optimality, and the geometry of phenotype space. Science 336, 1157–1160 (2012)
Schuetz, R., Zamboni, N., Zampieri, M., Heinemann, M., Sauer, U.: Multidimensional optimality of microbial metabolism. Science 336, 601–604 (2012)
Szekely, P., Sheftel, H., Mayo, A., Alon, U.: Evolutionary tradeoffs between economy and effectiveness in biological homeostasis systems. PLoS Comput. Biol. 9(8), e1003163 (2013)
Zipf, G.K.: Human Behavior and the Principle of Least Effort (1949)
Maritan, A., Rinaldo, A., Rigon, R., Giacometti, A., Rodrígued-Iturbe, I.: Scaling laws for river networks. Phys. Rev. E 53(2), 1510 (1996)
Ferrer i Cancho, R., Solé, R.V.: Least effort and the origins of scaling in human language. Proc. Natl. Acad. Sci. 100(3), 788–791 (2003)
Barthelemy, M.: Spatial networks. Phys. Rep. 499, 1–101 (2011)
Louf, R., Jensen, P., Barthelemy, M.: Emergence of hierarchy in cost-driven growth of spatial networks. Proc. Natl. Acad. Sci. 110(22), 8824–8829 (2013)
Dawkins, R.: The Blind Watchmaker: Why the Evidence of Evolution Reveals a Universe Without Design. WW Norton & Company (1986)
Dennett, D.C.: Darwin’s Dangerous Idea. The Sciences (1995)
Seoane, L.F., Solé, R.: Phase transitions in Pareto optimal complex networks. Phys. Rev. E 92, 032807 (2015)
Avena-Koenigsberger, A., Goñi, J., Solé, R., Sporns, O.: Network morphospace. J. Royal Soc. Interface 12(103), 20140881 (2015)
Goñi, J., Avena-Koenigsberger, A., de Menizabal, N.V., van den Heuvel, M., Betzel, R., Sporns, O.: Exploring the morphospace of communication efficiency in complex networks. PLoS ONE 8, e58070 (2013)
Priester, C., Schmitt, S., Peixoto, T.P.: Limits and trade-offs of topological network robustness. PLoS ONE 9(9), e108215 (2014)
Otero-Muras, I., Banga, J.R.: Multicriteria global optimization for biocircuit design. BMC Syst. Biol. 8, 113 (2014)
Seoane, L.F., Solé, R.: A multiobjective optimization approach to statistical mechanics. http://arxiv.org/abs/1310.6372 (2013)
Gibbs, J.W.: A method of geometrical representation of the thermodynamic properties of substances by means of surfaces. Trans. Conn. Acad. 2, 382–404 (1873)
Maxwell, J.C.: Theory of Heat. Longmans, Green, and Co., pp. 195–208 (1904)
Fonseca, C.M., Fleming, P.J.: An overview of evolutionary algorithms in multiobjective optimization. Evol. Comput. 3, 1–16 (1995)
Dittes, F.M.: Optimization on rugged landscapes: a new general purpose Monte Carlo approach. Phys. Rev. Lett. 76(25), 4651–4655 (1996)
Zitzler, E.: Evolutionary algorithms for multiobjective optimization: methods and applications. A dissertation submitted to the Swiss Federal Institute of Technology Zurich for the degree of Doctor of Technical Sciences (1999)
Coello, C.A.: Evolutionary multi-objective optimization: a historical view of the field. IEEE Comput. Intell. M. 1(1), 28–36 (2006)
Konak, A., Coit, D.W., Smith, A.E.: Multi-objective optimization using genetic algorithms: a tutorial. Reliab. Eng. Syst. Safe. 91(9), 992–1007 (2006)
Solé, R., Seoane, L.F.: Ambiguity in language networks. Linguist. Rev. 32(1), 5–35 (2014)
Prokopenko, M., Ay, N., Obst, O., Polani, D.: Phase transitions in least-effort communications. J. Stat. Mech. 2010(11), P11025 (2010)
Seoane, L.F., Solé, R.: Systems poised to criticality through Pareto selective forces. http://arxiv.org/abs/1510.08697 (2015)
Harte, J.: Maximum Entropy and Ecology: A Theory of Abundance, Distribution, and Energetics. Oxford University Press (2011)
Mora, T., Bialek, W.: Are biological systems poised at criticality? J. Stat. Phys. 144(2), 268–302 (2011)
Touchette, H., Ellis, R.S., Turkington, B.: An introduction to the thermodynamic and macrostate levels of nonequivalent ensembles. Phys A. 2004(340), 138–146 (2004)
Acknowledgments
This work has been supported by an ERC Advanced Grant, the Botín Foundation, by Banco Santander through its Santander Universities Global Division and by the Santa Fe Institute. We thank CSL members for insightful discussion.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Seoane, L.F., Solé, R. (2016). Multiobjective Optimization and Phase Transitions. In: Battiston, S., De Pellegrini, F., Caldarelli, G., Merelli, E. (eds) Proceedings of ECCS 2014. Springer Proceedings in Complexity. Springer, Cham. https://doi.org/10.1007/978-3-319-29228-1_22
Download citation
DOI: https://doi.org/10.1007/978-3-319-29228-1_22
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-29226-7
Online ISBN: 978-3-319-29228-1
eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)