Abstract
We present Tangible Networks (TN), a novel electronic toolkit for communicating and explaining concepts and models in complexity sciences to a variety of audiences. TN is an interactive hands-on platform for visualising the real-time behaviour of mathematical and computational models on complex networks. Compared to models running on a computer, the physical interface encourages playful exploration. We discuss the design of the toolkit, the implementation of different mathematical models and how TN has been received to date.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Available online at https://ccl.northwestern.edu/netlogo/.
- 2.
See for example https://forum.arduino.cc.
References
Arduino Project: Arduino. www.arduino.cc
Arenas, A., DÃaz-Guilera, A., Kurths, J., Moreno, Y., Zhou, C.: Synchronization in complex networks. Phys. Rep. 469(3), 93–153 (2008)
BCCS: BCCS Outreach (2014). http://www.bristol.ac.uk/bccs/public-engagement/
Bdeir, A.: Electronics as material: littleBits. In: Proceedings of the ACM TEI ’09, pp. 397–400 (2009). http://dl.acm.org/citation.cfm?id=1517743
Bubela, T., Nisbet, M.C., Borchelt, R., Brunger, F., Critchley, C., Einsiedel, E., Geller, G., Gupta, A., Hampel, J., Hyde-Lay, R., et al.: Science communication reconsidered. Nat. Biotech. 27(6), 514–518 (2009)
Buck, J.: Synchronous rhythmic flashing of fireflies. ii. Quarterly review of biology, pp. 265–289 (1988)
Campos, P.R.A., de Oliveira, V.M., Moreira, F.G.B.: Small-world effects in the majority-vote model. Phys. Rev. E 67, 026104 (Feb 2003). http://link.aps.org/doi/10.1103/PhysRevE.67.026104
Dorfler, F., Bullo, F.: Synchronization and transient stability in power networks and nonuniform kuramoto oscillators. SIAM J. Control Optim. 50(3), 1616–1642 (2012)
Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. Eur. Phys. J. B-Condens. Matter Complex Syst. 61(4), 485–491 (2008)
FitzHugh, R.: Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1(6), 445–466 (1961)
Girouard, A., Solovey, E., Hirshfield, L.: Smart Blocks: a tangible mathematical manipulative. In: Proceedings of ACM TEI ’07, pp. 183–186 (2007). http://dl.acm.org/citation.cfm?id=1227007
Glowacki, D.R., O’Connor, M., Calabro, G., Price, J., Tew, P., Mitchell, T., Hyde, J., Tew, D., Coughtrie, D.J., McIntosh-Smith, S.: a GPU-accelerated immersive audiovisual framework for interaction with molecular dynamics using consumer depth sensors. Faraday Discussions (2014). http://pubs.rsc.org/en/Content/ArticleLanding/2014/FD/c4fd00008k
Grasha, A.: Teaching with Style: A Practical Guide to Enhancing Learning by Understanding Teaching and Learning Styles. Alliance Publishers, Curriculum for change series (1996)
Horn, M.S., Jacob, R.K.J.: Designing tangible programming languages for classroom use. In: Proceedings of ACM TEI ’07, pp. 159–162 (2007). http://dl.acm.org/citation.cfm?id=1227003
Ishii, H., Ullmer, B.: Tangible bits: towards seamless interfaces between people, bits and atoms. In: Proceedings of ACM CHI ’97, pp. 234–241 (1997). http://dl.acm.org/citation.cfm?id=258715
Kolb, D.A., et al.: Experiential learning: Experience as the Source of Learning and Development, vol. 1. Prentice-Hall Englewood Cliffs, NJ (1984)
Kuramoto, Y.: Chemical oscillations, waves, and turbulence. Courier Dover Publications (2003)
Marshall, P.: Do tangible interfaces enhance learning? In: Proceedings of ACM TEI ’07, pp. 163–170 (2007). http://dl.acm.org/citation.cfm?id=1227004
Mitchell, T., Hyde, J., Tew, P., Glowacki, D.: danceroom Spectroscopy: at the frontiers of physics, performance, interactive art and technology. Leonardo, p. 140826115909005 (Aug 2014). http://www.mitpressjournals.org/doi/abs/10.1162/LEON_a_00924
Nagumo, J., Arimoto, S., Yoshizawa, S.: An active pulse transmission line simulating nerve axon. Proc. IRE 50(10), 2061–2070 (1962)
Newman, M.: Networks: an introduction. Oxford University Press (2010)
Riechmann, S.W., Grasha, A.F.: A rational approach to developing and assessing the construct validity of a student learning style scales instrument. J. Psychol. 87(2), 213–223 (1974)
Rubenstein, M., Cornejo, a., Nagpal, R.: Programmable self-assembly in a thousand-robot swarm. Science 345(6198), 795–799 (Aug 2014). http://www.sciencemag.org/cgi/doi/10.1126/science.1254295
Schweikardt, E., Gross, M.: roBlocks: a robotic construction kit for mathematics and science education. In: Proceedings of ACM ICMI ’06 (2006). http://dl.acm.org/citation.cfm?id=1181010
Tangible Networks. www.tangiblenetworks.net
Wolfendale committee and others: Wolfendale committee final report (1995)
Wynne, B.: Public engagement as a means of restoring public trust in science—hitting the notes, but missing the music? Public Health Genomics 9(3), 211–220 (2006)
Acknowledgments
This work has been funded by the Bristol Centre for Complexity Sciences, through EPSRC grant EP/I013717/1. EK wishes to acknowledge funding from the James Dyson Foundation.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Knoop, E., Barter, E., de Villafranca, A.E.M., Matyjaszkiewicz, A., McWilliams, C., Roberts, L. (2016). Tangible Networks: A Toolkit for Exploring Network Science. In: Battiston, S., De Pellegrini, F., Caldarelli, G., Merelli, E. (eds) Proceedings of ECCS 2014. Springer Proceedings in Complexity. Springer, Cham. https://doi.org/10.1007/978-3-319-29228-1_4
Download citation
DOI: https://doi.org/10.1007/978-3-319-29228-1_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-29226-7
Online ISBN: 978-3-319-29228-1
eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)