Skip to main content

Structure of a Media Co-occurrence Network

  • Conference paper
  • First Online:
Proceedings of ECCS 2014

Abstract

Social networks have been of much interest in recent years. We here focus on a network structure derived from co-occurrences of people in traditional newspaper media. We find three clear deviations from what can be expected in a random graph. First, the average degree in the empirical network is much lower than expected, and the average weight of a link much higher than expected. Secondly, high degree nodes attract disproportionately much weight. Thirdly, relatively much of the weight seems to concentrate between high degree nodes. We believe this can be explained by the fact that most people tend to co-occur repeatedly with the same people. We create a model that replicates these observations qualitatively based on two self-reinforcing processes: (1) more frequently occurring persons are more likely to occur again; and (2) if two people co-occur frequently, they are more likely to co-occur again. This suggest that the media tends to focus on people that are already in the news, and that they reinforce existing co-occurrences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.joyonews.org.

  2. 2.

    See https://catalog.ldc.upenn.edu/LDC2008T19 for the corpus. We only used the first two years of the dataset.

References

  1. Amaral, L.A.N., Scala, A., Barthélémy, M., Stanley, H.E.: Classes of small-world networks. Proc. Natl. Acad. Sci. USA 97(21), 11149–11152 (2000)

    Article  ADS  Google Scholar 

  2. Barabási, A.L.: Scale-free networks: a decade and beyond. Science 325(5939), 412–413 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Barrat, A., Barthélemy, M., Pastor-Satorras, R., Vespignani, A.: The architecture of complex weighted networks. Proc. Natl. Acad. Sci. USA 101(11), 3747–3752 (2004)

    Article  ADS  Google Scholar 

  5. Barthélemy, M., Barrat, A., Pastor-Satorras, R., Vespignani, A.: Characterization and modeling of weighted networks. Physica A 346(1–2), 34–43 (2005)

    Article  ADS  Google Scholar 

  6. Bullmore, E., Sporns, O.: Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 10(3), 186–98 (2009)

    Article  Google Scholar 

  7. Clauset, A., Shalizi, C.R., Newman, M.E.J.: Power-law distributions in empirical data. SIAM Rev. Soc. Ind. Appl. Math. 51(4), 661–703 (2009)

    MathSciNet  MATH  Google Scholar 

  8. Corten, R.: Composition and structure of a large online social network in the netherlands. PLoS ONE 7(4), e34760 (2012)

    Article  ADS  Google Scholar 

  9. Cranmer, S.J., Menninga, E.J., Mucha, P.J.: Kantian fractionalization predicts the conflict propensity of the international system. arXiv:1402.0126 [physics] (2014)

  10. Dorogovtsev, S.N., Mendes, J.F.F., Samukhin, A.N.: Structure of growing networks with preferential linking. Phys. Rev. Lett. 85(21), 4633–4636 (2000)

    Article  ADS  Google Scholar 

  11. Ferrara, E.: A large-scale community structure analysis in facebook. EPJ Data Sci. 1(1), 9 (2012)

    Article  Google Scholar 

  12. Finkel, J.R., Grenager, T., Manning, C.: Incorporating non-local information into information extraction systems by gibbs sampling. In: Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics. p. 363–370. Association for Computational Linguistics, Stroudsburg, PA, USA (2005)

    Google Scholar 

  13. Garlaschelli, D., Caldarelli, G., Pietronero, L.: Universal scaling relations in food webs. Nature 423(6936), 165–8 (2003)

    Article  ADS  MATH  Google Scholar 

  14. Garlaschelli, D., Loffredo, M.I.: Structure and evolution of the world trade network. Physica A 355(1), 138–144 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  15. González, M.C., Hidalgo, C.A., Barabási, A.L.: Understanding individual human mobility patterns. Nature 453(7196), 779–82 (2008)

    Article  ADS  Google Scholar 

  16. Guimerà, R., Stouffer, D.B., Sales-Pardo, M., Leicht, E.A., Newman, M.E.J., Amaral, L.A.N.: Origin of compartmentalization in food webs. Ecology 91(10), 2941–2951 (2010)

    Article  Google Scholar 

  17. Guimerà, R., Sales-Pardo, M., Amaral, L.A.N.: Classes of complex networks defined by role-to-role connectivity profiles. Nat. Phys. 3(1), 63–69 (2007)

    Article  ADS  Google Scholar 

  18. Hagmann, P., Cammoun, L., Gigandet, X., Meuli, R., Honey, C.J., Wedeen, V.J., Sporns, O.: Mapping the structural core of human cerebral cortex. PLoS Biol. 6(7), e159 (2008)

    Article  Google Scholar 

  19. Joshi, D., Gatica-Perez, D.: Discovering groups of people in google news. In: Proceedings of the 1st ACM International Workshop on Human-centered Multimedia, pp. 55–64. HCM ’06, ACM, New York, NY, USA (2006)

    Google Scholar 

  20. Knoke, D., Yang, S.: Social Network Analysis. In: Quantitative Applications in the Social Sciences, vol. 154, 2nd edn. SAGE Publications, Inc, Cambridge, Mass (2007)

    Google Scholar 

  21. Kumpula, J.M., Onnela, J.P., Saramäki, J., Kaski, K., Kertész, J.: Emergence of communities in weighted networks. Phys. Rev. Lett. 99(22), 228701 (2007)

    Google Scholar 

  22. Maoz, Z., Terris, L.G., Kuperman, R.D., Talmud, I.: What is the enemy of my enemy? causes and consequences of imbalanced international relations, 1816–2001. J. Politic. 69(01), 100–115 (2008)

    Article  Google Scholar 

  23. Milne, D., Witten, I.H.: Learning to link with wikipedia. In: Proceedings of the 17th ACM Conference on Information and Knowledge Management, pp. 509–518. CIKM ’08, ACM, New York, NY, USA (2008)

    Google Scholar 

  24. Newman, M.E.J.: Assortative mixing in networks. Phys. Rev. Lett. 89(20), 208701 (2002)

    Article  ADS  Google Scholar 

  25. Onnela, J.P., Saramäki, J., Hyvönen, J., Szabó, G., de Menezes, M.A., Kaski, K., Barabási, A.L., Kertész, J.: Analysis of a large-scale weighted network of one-to-one human communication. New. J. Phys. 9(6), 179–179 (2007)

    Article  ADS  Google Scholar 

  26. Ou, Q., Jin, Y.D., Zhou, T., Wang, B.H., Yin, B.Q.: Power-law strength-degree correlation from resource-allocation dynamics on weighted networks. Phys. Rev. E 75(2), 021102 (2007)

    Article  ADS  Google Scholar 

  27. Özgür, A., Bingol, H.: Social network of co-occurrence in news articles. In: Aykanat, C., Dayar, T., Korpeoglu, I. (eds.) Computer and Information Sciences—ISCIS 2004, pp. 688–695. No. 3280 in Lecture Notes in Computer Science. Springer Verlag, Heidelberg (2004)

    Google Scholar 

  28. Petri, G., Scolamiero, M., Donato, I., Vaccarino, F.: Topological strata of weighted complex networks. PLoS ONE 8(6), e66506 (2013)

    Article  ADS  Google Scholar 

  29. Pouliquen, B., Tanev, H., Atkinson, M.: Extracting and learning social networks out of multilingual news. In: Social Networks and application tools (2008)

    Google Scholar 

  30. Simini, F., González, M.C., Maritan, A., Barabási, A.L.: A universal model for mobility and migration patterns. Nature 484(7392), 96–100 (2012)

    Article  ADS  Google Scholar 

  31. Steinberger, R., Pouliquen, B.: Cross-lingual named entity recognition. Ling. Inv. 30(1), 135–162 (2007)

    Google Scholar 

  32. Traag, V.A., Van Dooren, P., Nesterov, Y.: Narrow scope for resolution-limit-free community detection. Phys. Rev. E 84(1), 016114 (2011)

    Article  ADS  Google Scholar 

  33. Traud, A.L., Mucha, P.J., Porter, M.A.: Social structure of facebook networks. Physica A 391(16), 4165–4180 (2012)

    Article  ADS  Google Scholar 

  34. Wang, W.X., Wang, B.H., Hu, B., Yan, G., Ou, Q.: General dynamics of topology and traffic on weighted technological networks. Phys. Rev. Lett. 94(18), 188702 (2005)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

VT would like to thank Fabien Tarissan for interesting comments and remarks on an earlier version of this manuscript. This research is funded by the Royal Netherlands Academy of Arts and Sciences (KNAW) through its eHumanities project (http://www.ehumanities.nl/computational-humanities/elite-network-shifts/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Traag .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Traag, V.A., Reinanda, R., van Klinken, G. (2016). Structure of a Media Co-occurrence Network. In: Battiston, S., De Pellegrini, F., Caldarelli, G., Merelli, E. (eds) Proceedings of ECCS 2014. Springer Proceedings in Complexity. Springer, Cham. https://doi.org/10.1007/978-3-319-29228-1_8

Download citation

Publish with us

Policies and ethics