Abstract
This article shows the results of the work on the system to recognize artefacts during the EEG research. The focus is on recognizing only one but the most common artefact which is eyes blinking. Recognition was used six artificial neural networks with 1, 2, 5, 10, 100 and 1000 hidden layers. For its learn were used 16765 samples. This article is based on of Emotiv EPOC+™ system and the MATLAB environment.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Viola, F.C., Thorne, J., Edmonds, B., Schneider, T., Eichele, T., Debener, S.: Semi-Automatic identification of independent components representing EEG artifact. Clin. Neurophysiol. 120(5), 868–877 (2009)
Gwin, J.T., Gramann, K., Makeig, S., Ferris, D.P.: Removal of movement artifact from high-density eeg recorded during walking and running. J. Neurophysiol. 103(6), 3526–3534 (2010)
Makeig, S., Debener, S., Onton, J., Delorme, A.: Mining event-related brain dynamics. Trends Cogn. Sci. 8(5), 204–210 (2004)
Nonclercq, A., Mathys, P.: Quantification of motion artifact rejection due to active electrodes and driven-right-leg circuit in spike detection algorithms. IEEE Trans. Biomed. Eng. 57(11), 2746–2752 (2010)
Romo Vázquez, R., Vélez-Pérez, H., Ranta, R., Louis Dorr, V., Maquin, D., Maillard, L.: Blind source separation, wavelet denoising and discriminant analysis for EEG artefacts and noise cancelling. Biomed. Signal Process. Control 7(4), 389–400 (2012)
Verleger, R.: Should we really use different estimates for correcting EEG artefacts produced by blinks and by Saccades? J. Psychophysiol. 14(4), 204–206 (2000)
O’Regan, S., Faul, S., Marnane, W.: Automatic detection of EEG artefacts arising from head movements. In: 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 6353–56 (2010)
Joyce, C.A., Gorodnitsky, I.F., Kutas, M.: Automatic removal of eye movement and blink artifacts from eeg data using blind component separation. Psychophysiology 41(2), 313–325 (2004)
O’Regan, S., Faul, S., Marnane, W.: Automatic detection of EEG artefacts arising from head movements using EEG and gyroscope signals. Med. Eng. Phys. 35(7), 867–874 (2013)
Niazy, R.K., Beckmann, C.F., Iannetti, G.D., Brady, J.M., Smith, S.M.: Removal of FMRI environment artifacts from EEG data using optimal basis sets. NeuroImage 28(3), 720–737 (2005)
Allen, P.J., Josephs, O., Turner, R.: A method for removing imaging artifact from continuous EEG recorded during functional MRI. NeuroImage 12(2), 230–239 (2000)
Delorme, A., Sejnowski, T., Makeig, S.: Enhanced detection of artifacts in EEG data using higher-order statistics and independent component analysis. NeuroImage 34(4), 1443–1449 (2007)
Rowley, H.A., Baluja, S., Kanade, T.: Neural network-based face detection. IEEE Trans. Pattern Anal. Mach. Intell. 20(1), 23–38 (1998)
Gardner, M.W., Dorling, S.R.: Artificial neural networks (the Multilayer Perceptron)—a review of applications in the atmospheric sciences. Atmos. Environ. 32(14–15), 2627–2636 (1998)
Lee, K.Y., Cha, Y.T., Park, J.H.: Short-term load forecasting using an artificial neural network. IEEE Trans. Power Syst. 7(1), 124–132 (1992)
Khan, J., Wei, J.S., Ringnér, M., Saal, L.H., Ladanyi, M., Westermann, F., Berthold, F., et al.: Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nat. Med. 7(6), 673–679 (2001)
Park, D.C., El-Sharkawi, M.A., Marks, II R.J., Atlas, L.E., Damborg, M.J.: Electric load forecasting using an artificial neural network. IEEE Trans. Power Syst. 6(2), 442–449 (1991)
Zyss, T.: Zastosowanie układu 10–20 w rozmieszczaniu elektrod do EEG. Przedsiębiorstwo Informatyki Medycznej ELMIKO (2007)
Klekowicz, H. Opis i identyfikacja struktur przejściowych w sygnale EEG (2008)
Emotiv EPOC Specifications. https://emotiv.com
Gevins, A.S., Yeager, C.L., Diamond, S.L., Spire, J., Zeitlin, G.M., Gevins, A.H.: Automated analysis of the electrical activity of the human brain (EEG): a progress report. Proc. IEEE 63(10), 1382–1399 (1975)
Sanei, S., Chambers, J.A.: EEG Signal Processing: Sanei/EEG Signal Processing. Wiley, West Sussex (2007)
Vigário, R.N.: Extraction of ocular artefacts from EEG using independent component analysis. Electroencephalogr. Clin. Neurophysiol. 103(3), 395–404 (1997)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Kubacki, A., Jakubowski, A., Sawicki, Ł. (2016). Detection of Artefacts from the Motion of the Eyelids Created During EEG Research Using Artificial Neural Network. In: Szewczyk, R., Zieliński, C., Kaliczyńska, M. (eds) Challenges in Automation, Robotics and Measurement Techniques. ICA 2016. Advances in Intelligent Systems and Computing, vol 440. Springer, Cham. https://doi.org/10.1007/978-3-319-29357-8_24
Download citation
DOI: https://doi.org/10.1007/978-3-319-29357-8_24
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-29356-1
Online ISBN: 978-3-319-29357-8
eBook Packages: EngineeringEngineering (R0)