Abstract
The paper presents preliminary results of the work with the Emotiv EPOC+™ system, which enabled in binary way control of objects. The system reads the brain waves from 14 plus 2 references electrodes. The controlled object was stepper motor with encoder released by the B&R company. For communication between the PC and engine control module was used Ethernet POWERLINK protocol, which allows data transfer with a minimum cycle time of 200 μs. Completely omitted PLC controller, which function was taken over the PC.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bitzer, S., van der Smagt, P.: Learning EMG control of a robotic hand: towards active prostheses. In: Proceedings 2006 IEEE International Conference on Robotics and Automation. ICRA 2006, pp. 2819–2823 (2006)
Yang, D., Zhao, J., Y, Gu, Wang, X., Li, N., Jiang, L., Liu, H., Huang, H., Zhao, D.: An anthropomorphic robot hand developed based on underactuated mechanism and controlled by EMG signals. J. Bionic. Eng. 6(3), 255–263 (2009)
Chapin, J.K., Moxon, K.A., Markowitz, R.S., Nicolelis, M.A.L.: Real-time control of a robot arm using simultaneously recorded neurons in the motor cortex. Nat. Neurosci. 2(7), 664–670 (1999)
Nicolelis, M.A.L.: Brain–machine interfaces to restore motor function and probe neural circuits. Nat. Rev. Neurosci. 4(5), 417–422 (Maj 2003)
Pfurtscheller, G., Neuper, C.: Motor imagery and direct brain-computer communication. Proc. IEEE 89(7), 1123–1134 (Lipiec 2001)
Serruya, M.D., Hatsopoulos, N.G., Paninski, L., Fellows, M.R., Donoghue, J.P.: Brain-machine interface: instant neural control of a movement signal. Nature 416(6877), 141–142 (2002)
Taylor, D.M., Tillery, S.I.H., Schwartz, A.B.: Direct cortical control of 3D neuroprosthetic devices. Science 296(5574), 1829–1832 (2002)
Wessberg, J., Stambaugh, C.R., Kralik, J.D., Beck, P.D., Laubach, M., Chapin, J.K., Kim, J., Biggs, S.J., Srinivasan, M.A., Nicolelis, M.A.L.: Real-time prediction of hand trajectory by ensembles of cortical neurons in primates. Nature 408(6810), 361–365 (2000)
Wolpaw, J.R., McFarland, D.J., Vaughan, T.M.: Brain-computer interface research at the wadsworth center. IEEE Trans. Rehabil. Eng. 8(2), 222–226 (2000)
Lee, J.-H., Ryu, J., Jolesz, F.A., Cho, Z.-H., Yoo, S.-S.: Brain–machine interface via real-time FMRI: preliminary study on thought-controlled robotic arm. Neurosci. Lett. 450(1), 1–6 (2009)
McFarland, D.J., Sarnacki, W.A., Wolpaw, J.R.: Electroencephalographic (EEG) control of three-dimensional movement. J. Neural Eng. 7(3), 036007 (2010)
Millan, JdR, Renkens, F., Mourino, J., Gerstner, W.: Noninvasive brain-actuated control of a mobile robot by human EEG. IEEE Trans. Biomed. Eng. 51(6), 1026–1033 (2004)
Oberman, L.M., McCleery, J.P., Ramachandran, V.S., Pineda, J.A.: eeg evidence for mirror neuron activity during the observation of human and robot actions: toward an analysis of the human qualities of interactive robots. In: Neurocomputing, Selected Papers from the 3rd International Conference on Development and Learning (ICDL 2004) Time Series Prediction Competition: The CATS benchmark 3rd International Conference on Development and Learning, vol. 70, no. 13–15, pp. 2194–2203 (2007)
Onose, G., Grozea, C., Anghelescu, A., Daia, C., Sinescu, C.J., Ciurea, A.V., Spircu, T., et al.: On the Feasibility of using motor imagery EEG-based brain–computer interface in chronic tetraplegics for Assistive robotic arm control: a clinical test and long-term post-trial follow-up. Spinal Cord 50(8), 599–608 (Sierpie 2012)
Ranky, G.N., Adamovich, S.: Analysis of a commercial EEG device for the control of a robot arm. In: Proceedings of the 2010 IEEE 36th Annual Northeast Bioengineering Conference, pp. 1–2 (2010)
Wolpaw, J.R, Birbaumer, N., McFarland, D.J., Pfurtscheller, G., Vaughan, T.M.: Brain–computer interfaces for communication and control. Clin. Neurophys. 113(6), 767–791 (2002)
Güler, İ., Übeyli, E.D.: Adaptive neuro-fuzzy inference system for classification of EEG signals using wavelet coefficients. J. Neurosci. Methods 148(2), 113–121 (Październik 2005)
Ito, M., Tani, J.: On-Line imitative interaction with a humanoid robot using a dynamic neural network model of a mirror system. Adapt. Behav. 12(2), 93–115 (2004)
Lindblom, J., Ziemke, T.: Social situatedness of natural and artificial intelligence: Vygotsky and beyond. Adapt. Behav. 11(2), 79–96 (2003)
Klekowicz, H.: Opis i identyfikacja struktur przejściowych w sygnale EEG (2008)
Zyss, T.: Zastosowanie układu 10–20 w rozmieszczaniu elektrod do EEG. Przedsiębiorstwo Informatyki Medycznej ELMIKO (2007)
Emotiv EPOC Specifications. https://emotiv.com
POWERLINK Configuration and Diagnostics. https://www.br-automation.com
Datasheet X20(c)BC0083. https://www.br-automation.com
Datasheet X20SM1436. https://www.br-automation.com
Datasheet X20(c)DO9322. https://www.br-automation.com
Stepper motors user’s manual. https://www.br-automation.com
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Kubacki, A., Jakubowski, A., Rybarczyk, D., Owczarek, P. (2016). Controlling the Direction of Rotation of the Motor Using Brain Waves via Ethernet POWERLINK Protocol. In: Szewczyk, R., Zieliński, C., Kaliczyńska, M. (eds) Challenges in Automation, Robotics and Measurement Techniques. ICA 2016. Advances in Intelligent Systems and Computing, vol 440. Springer, Cham. https://doi.org/10.1007/978-3-319-29357-8_8
Download citation
DOI: https://doi.org/10.1007/978-3-319-29357-8_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-29356-1
Online ISBN: 978-3-319-29357-8
eBook Packages: EngineeringEngineering (R0)