Skip to main content

Controlling the Direction of Rotation of the Motor Using Brain Waves via Ethernet POWERLINK Protocol

  • Conference paper
  • First Online:
Challenges in Automation, Robotics and Measurement Techniques (ICA 2016)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 440))

Included in the following conference series:

Abstract

The paper presents preliminary results of the work with the Emotiv EPOC+™ system, which enabled in binary way control of objects. The system reads the brain waves from 14 plus 2 references electrodes. The controlled object was stepper motor with encoder released by the B&R company. For communication between the PC and engine control module was used Ethernet POWERLINK protocol, which allows data transfer with a minimum cycle time of 200 μs. Completely omitted PLC controller, which function was taken over the PC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bitzer, S., van der Smagt, P.: Learning EMG control of a robotic hand: towards active prostheses. In: Proceedings 2006 IEEE International Conference on Robotics and Automation. ICRA 2006, pp. 2819–2823 (2006)

    Google Scholar 

  2. Yang, D., Zhao, J., Y, Gu, Wang, X., Li, N., Jiang, L., Liu, H., Huang, H., Zhao, D.: An anthropomorphic robot hand developed based on underactuated mechanism and controlled by EMG signals. J. Bionic. Eng. 6(3), 255–263 (2009)

    Article  Google Scholar 

  3. Chapin, J.K., Moxon, K.A., Markowitz, R.S., Nicolelis, M.A.L.: Real-time control of a robot arm using simultaneously recorded neurons in the motor cortex. Nat. Neurosci. 2(7), 664–670 (1999)

    Article  Google Scholar 

  4. Nicolelis, M.A.L.: Brain–machine interfaces to restore motor function and probe neural circuits. Nat. Rev. Neurosci. 4(5), 417–422 (Maj 2003)

    Google Scholar 

  5. Pfurtscheller, G., Neuper, C.: Motor imagery and direct brain-computer communication. Proc. IEEE 89(7), 1123–1134 (Lipiec 2001)

    Google Scholar 

  6. Serruya, M.D., Hatsopoulos, N.G., Paninski, L., Fellows, M.R., Donoghue, J.P.: Brain-machine interface: instant neural control of a movement signal. Nature 416(6877), 141–142 (2002)

    Google Scholar 

  7. Taylor, D.M., Tillery, S.I.H., Schwartz, A.B.: Direct cortical control of 3D neuroprosthetic devices. Science 296(5574), 1829–1832 (2002)

    Google Scholar 

  8. Wessberg, J., Stambaugh, C.R., Kralik, J.D., Beck, P.D., Laubach, M., Chapin, J.K., Kim, J., Biggs, S.J., Srinivasan, M.A., Nicolelis, M.A.L.: Real-time prediction of hand trajectory by ensembles of cortical neurons in primates. Nature 408(6810), 361–365 (2000)

    Google Scholar 

  9. Wolpaw, J.R., McFarland, D.J., Vaughan, T.M.: Brain-computer interface research at the wadsworth center. IEEE Trans. Rehabil. Eng. 8(2), 222–226 (2000)

    Article  Google Scholar 

  10. Lee, J.-H., Ryu, J., Jolesz, F.A., Cho, Z.-H., Yoo, S.-S.: Brain–machine interface via real-time FMRI: preliminary study on thought-controlled robotic arm. Neurosci. Lett. 450(1), 1–6 (2009)

    Article  Google Scholar 

  11. McFarland, D.J., Sarnacki, W.A., Wolpaw, J.R.: Electroencephalographic (EEG) control of three-dimensional movement. J. Neural Eng. 7(3), 036007 (2010)

    Article  Google Scholar 

  12. Millan, JdR, Renkens, F., Mourino, J., Gerstner, W.: Noninvasive brain-actuated control of a mobile robot by human EEG. IEEE Trans. Biomed. Eng. 51(6), 1026–1033 (2004)

    Article  Google Scholar 

  13. Oberman, L.M., McCleery, J.P., Ramachandran, V.S., Pineda, J.A.: eeg evidence for mirror neuron activity during the observation of human and robot actions: toward an analysis of the human qualities of interactive robots. In: Neurocomputing, Selected Papers from the 3rd International Conference on Development and Learning (ICDL 2004) Time Series Prediction Competition: The CATS benchmark 3rd International Conference on Development and Learning, vol. 70, no. 13–15, pp. 2194–2203 (2007)

    Google Scholar 

  14. Onose, G., Grozea, C., Anghelescu, A., Daia, C., Sinescu, C.J., Ciurea, A.V., Spircu, T., et al.: On the Feasibility of using motor imagery EEG-based brain–computer interface in chronic tetraplegics for Assistive robotic arm control: a clinical test and long-term post-trial follow-up. Spinal Cord 50(8), 599–608 (Sierpie 2012)

    Google Scholar 

  15. Ranky, G.N., Adamovich, S.: Analysis of a commercial EEG device for the control of a robot arm. In: Proceedings of the 2010 IEEE 36th Annual Northeast Bioengineering Conference, pp. 1–2 (2010)

    Google Scholar 

  16. Wolpaw, J.R, Birbaumer, N., McFarland, D.J., Pfurtscheller, G., Vaughan, T.M.: Brain–computer interfaces for communication and control. Clin. Neurophys. 113(6), 767–791 (2002)

    Google Scholar 

  17. Güler, İ., Übeyli, E.D.: Adaptive neuro-fuzzy inference system for classification of EEG signals using wavelet coefficients. J. Neurosci. Methods 148(2), 113–121 (Październik 2005)

    Google Scholar 

  18. Ito, M., Tani, J.: On-Line imitative interaction with a humanoid robot using a dynamic neural network model of a mirror system. Adapt. Behav. 12(2), 93–115 (2004)

    Article  Google Scholar 

  19. Lindblom, J., Ziemke, T.: Social situatedness of natural and artificial intelligence: Vygotsky and beyond. Adapt. Behav. 11(2), 79–96 (2003)

    Article  Google Scholar 

  20. Klekowicz, H.: Opis i identyfikacja struktur przejściowych w sygnale EEG (2008)

    Google Scholar 

  21. Zyss, T.: Zastosowanie układu 10–20 w rozmieszczaniu elektrod do EEG. Przedsiębiorstwo Informatyki Medycznej ELMIKO (2007)

    Google Scholar 

  22. Emotiv EPOC Specifications. https://emotiv.com

  23. POWERLINK Configuration and Diagnostics. https://www.br-automation.com

  24. Datasheet X20(c)BC0083. https://www.br-automation.com

  25. Datasheet X20SM1436. https://www.br-automation.com

  26. Datasheet X20(c)DO9322. https://www.br-automation.com

  27. Stepper motors user’s manual. https://www.br-automation.com

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arkadiusz Kubacki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Kubacki, A., Jakubowski, A., Rybarczyk, D., Owczarek, P. (2016). Controlling the Direction of Rotation of the Motor Using Brain Waves via Ethernet POWERLINK Protocol. In: Szewczyk, R., Zieliński, C., Kaliczyńska, M. (eds) Challenges in Automation, Robotics and Measurement Techniques. ICA 2016. Advances in Intelligent Systems and Computing, vol 440. Springer, Cham. https://doi.org/10.1007/978-3-319-29357-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29357-8_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29356-1

  • Online ISBN: 978-3-319-29357-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics