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Abstract. Phase correlation is one of the classic methods for sparse
motion or displacement estimation. It is renowned in the literature for
high precision and insensitivity against illumination variations. We pro-
pose several important enhancements to the phase correlation (PhC)
method which render it more robust against those situations where a
motion measurement is not possible (low structure, too much noise, too
different image content in the corresponding measurement windows).
This allows the method to perform self-diagnosis in adverse situations.
Furthermore, we extend the PhC method by a robust scheme for detect-
ing and classifying the presence of multiple motions and estimating their
uncertainties. Experimental results on the Middlebury Stereo Dataset
and on the KITTI Optical Flow Dataset show the potential offered by
the enhanced method in contrast to the PhC implementation of OpenCV.

Keywords: Optical flow · Motion estimation · Phase correlation

1 Introduction

Phase Correlation (PhC) is one of the four classical methods for local motion
estimation, together with discrete matching (a.k.a. block matching), differen-
tial matching and spatio-temporal optical flow measurement (structure tensor).
Although the fundamentals of PhC date back to the 1970s [2,4,5], the precise
relations between the listed families of approaches have not been analyzed thor-
oughly in the literature so far. Depending on the characteristics of the data
to be processed and to some degree also depending on the scientific commu-
nity which is regarded (computer vision, geophysical data analysis, time delay
estimation, ...), different families of methods are preferred for the task of estimat-
ing displacements or 2D motion. For instance, [6,7] are early papers proposing
the normalized cross correlation metric. How to optimize the metric is another
issue. Discrete matching is opposed to differential approaches lead by the classic
Lucas&Kanade approach [1].

Since Fourier transform is the main element of the PhC method, it shows
strong robustness against geometrical and photometric distortions [8–10].
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Fig. 1. Exemplary result of our enhanced PhC on data from the Middlebury Stereo
Dataset. Three different motions (depths) are present in the marked cell (brush, bust
and background), causing 3 distinct peaks in the delta array.

Like the classical differential matching schemes, the PhC method, with certain
extensions, can achieve subpixel matching accuracy [11]; accuracy of better than
1/100 pixel was claimed by [12,13]. Additional details regarding different vari-
ants of PhC algorithms can be found in [10,14–17,21,23]. Some of them describe
different ways to achieve subpixel matching accuracy, some others emphasize the
advantages of PhC for estimating homogenous displacements for larger images
(image registration). Some recent papers considered the use of PhC-based stereo
algorithms for remote sensing tasks applied to aerial imagery [18] and for interfer-
ometric SAR image co-registration [19]. We refer also to [20] where the PhC sta-
bilizes video sequences against illumination changes and camera shaking. Besides
some completely novel approaches, we extend in the present paper several ideas
that appear already in [20] and put them on a more systematic basis.

We emphasize that the method presented here does not aim at the compu-
tation of dense motion fields, but a) makes the classical PhC robust, and b)
extends the PhC method towards being able to obtain distributions of motion
vectors that appear in a given patch. In applications where the patch is assumed
to be subjected to a homogeneous translation motion (image registration), this
is already the desired result, whereas for complex motion fields these distribu-
tions give valuable prior information that allows to systematically initialize and
guide a subsequent sparse or (semi-)dense motion estimation procedure.

2 Approach

This section embeds the plain PhC method as it is described in the literature
into a framework that checks for potential problematic situations (due to invalid
or ambiguous input data) and performs a series of self-checks and filtering steps
that are necessary to employ the method in an autonomous mode without user
intervention. We provide solid and proven procedures for tuning the different
parameters that appear in the enhanced PhC method. The presentation of the
PhC method and the proposed extensions are described here for one-dimensional
signals; the generalization to more dimensions is straightforward.
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Let y[xn] and z[xn] be two observations of the same discrete signal s[xn],
where z[xn] contains a shift by a displacement d:

y[xn] = s[xn] and z[xn] = s[xn] ∗ δ[xn − d] = s[xn − d]. (1)

The orthonormal Fourier transform over a discrete area of size N yields:

Y [fk] = S[fk] and Z[fk] = S[fk] · 1√
N

· exp(−2πi · fk · d

N
). (2)

For further examination, we isolate the displacement and frequency dependent
phase shift between the two signals and introduce the cross-power spectrum
P [fk] and its inverse Fourier transform, the delta array p[xn]:

P [fk]
def=

Z[fk] · Y ∗[fk]
|Z[fk]| · |Y [fk]| = exp(−2πi · fk · d

N
), (3)

p[xn] def= F−1 (P [fk]) =
√

N · δ[xn − d]. (4)

The delta array p[xn] consists of an ideal δ-impulse which indicates the relative
shift between the two signals y[xn] and z[xn]. In a realistic setting, with noise1,
multiple motions2 and without periodicity of the images3, the delta array is more
complex and needs to be analyzed in detail to obtain reliable results.

In the following Sects. 2.1 — 2.4 we introduce several checks and filtering
steps which must be performed to let the PhC actually yield reliable and precise
results. Steps which need to be applied separately for both patches (y[xn], Y [fk]
or z[xn], Z[fk]) are only denoted for the first patch (second patch accordingly).

2.1 Structure Check

First we check if both image patches show sufficient structure to allow the dis-
placement estimation. We compute the gray scale variance of the patches in a
weighted manner using the weights w[xn] of the anti-leakage window:

σ̂2 =

(
N∑

n=1

w[xn]

)−1 N∑
n=1

w[xn] · (y[xn] − μ̂)2 with (5)

μ̂ =

(
N∑

n=1

w[xn]

)−1 N∑
n=1

w[xn] · y[xn]. (6)

Then we compare it against a threshold τ1 which was experimentally determined:

σ̂2
structured

>
<

unstructured

τ1. (7)

1 y[xn] → y[xn] + u[xn], where u[xn] is assumed to be N (0, σ2
s) i.i.d.

2 Due to independent motions within the image or geometric effects (e.g. zoom).
3 y[xn] → w[xn] · y[xn], where w[xn] is an anti-leakage window (e.g. Tukey).
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In our experiments with different datasets4 we found τ1 ≈ 90 to be a good
threshold to distinguish between structured and unstructured patches. Of course
this value varies with the noise level of the input images. Due to the normalization
of the weights, w[xn], it is independent of the chosen patch size.

2.2 Spectral Significance Filtering

After the transition to the frequency domain, we need to identify those significant
spectral coefficients Y [fk] and Z[fk] which represent the main structure of the
image patches and thus allow us to determine the displacement d. Therefore
we need to suppress the influence of the DC (fk = 0) spectral component of
the signal (mean value compensation) as well as the components whose spectral
magnitudes are dominated by noise (noise suppression).

Mean Compensation. Since most of the structural information of the image is
encoded in the low frequency AC (fk �= 0) spectral components, it is important
to compensate for the gray scale mean before the anti-leakage window w[xn] is
applied. Otherwise, these low frequency components would be superimposed by
the gray scale mean of the original image patch when the convolution with the
Fourier transform of the anti-leakage window w[xn] is performed5.

Y [fk] = F (w[xn] · (y[xn] − 〈y[xn]〉)) . (8)

Noise Suppression. We also need to suppress those spectral components of
Y [fk] and Z[fk] whose magnitudes are in the order of magnitude of the noise
floor because their phases are only dominated by noise and do not contain any
information. To do so, we compute the frequency distributions of |Y [fk]| and
|Z[fk]| and look for the first interval which is mainly dominated by noise. For a
fast approximation, we compute the mean τ2 of those magnitudes which lie in
the smaller half of the frequency distribution. Generally τ2 might be too large,
but this is negligible.

|Y [fk]|
significant

>
<

insignificant

τ2. (9)

2.3 Delta Array Check

After significance filtering has been applied, the cross-power spectrum P [fk] and
the delta array p[xn] are computed for significant components (see Eqs. 3 and 4).
The inverse Fourier transform is an orthonormal transformation, thus:

4 We used a 0.5 Tukey window on Middlebury Stereo and KITTI Optical Flow
datasets.

5 Convolution theorem: F(w[xn] · y[xn]) = F(w[xn]) ∗ F(y[xn]) = W [fk] ∗ Y [fk].
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N∑
k=1

|P [fk]|2 =

no. of significant componentens︷︸︸︷
Nsig =

N∑
n=1

|p[xn]|2 ≤ N. (10)

In an ideal case all the energy should concentrate on one δ-impulse which repre-
sents the displacement d. Hence we are only interested in those values of p[xn]
which hold a significant amount of the energy known in beforehand (see Eq. 10)
and thus represent a dominant motion. The other values which possess a much
lower energy are suppressed by computing a threshold τ3 based on the histogram
of the distribution of |p[xn]|2. We set the histogram range to [0, Nsig] (see Eq. 10),
the number of bins to the geometric mean mwin of the lengths of the window
and the right border of the first bin to be τ3. In our experiments we verified that
energies which represent a relevant motion always lie above this threshold. This
check fails if the energies of all spectral components are below τ3.

|p[xn]|
significant

>
<

insignificant

τ3 =
√

Nsig

mwin
(11)

2.4 Delta Array Clustering

So far, the tests were described for the one-dimensional case, but for the next
check we need the actual two-dimensional representation of the signal. Therefore
the delta array is written as p[xn]. In the absence of noise, the inverse Fourier
transform of P [fk] contains a single δ peak, or multiple δ peaks in case of
multiple motion. For real data, this / these peak(s) get smeared out and there
will be some background noise in the delta array. Hence we only examine the
significant (Eq. 11) values of the delta array p[xn]. We define the sets:

X def= {xn : |p[xn]| > τ3} and P def= {|p(xn)| : xn ∈ X} , |X | = |P| = Nsig. (12)

These two sets will serve as input for a weighted K-means clustering algorithm.

Initial Phase. The first mean chosen is the point with the largest weight.
We iteratively determine K − 1 more candidates as the ones with the largest
cumulative euclidean distance to the already chosen ones. A set of K covariance
matrices Σk is initialized as two dimensional identity matrices.

Labeling Phase. For each point we calculate the Mahalanobis distance to
the current K means mk and assign the point to the cluster of the mean with
minimum distance. Subsequently, we compute means and covariance matrices
of the updated clusters using the values of the delta array as weights. This is
repeated until either the clusters converge or a predefined maximum number of
iterations is reached.
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Algorithm 1. weighted k-means using Mahalanobis distance
1: function get labels(k, {xn}n=1,...,Nsig , {p(xn)}n=1,...,Nsig)
2: {mk}k=1,...,K ← initialize weighted means({xn}, {p(xn)})
3: {Σk}k=1,...,K ← initialize covariance matrices( )
4: repeat
5: for n ∈ {1, ..., Nsig} do
6: {dk}k=1,...,K ← get mahalanobis distances(xn)
7: labeln ← arg min

k
{dk}k=1,...,K

8: end for
9: update weighted means( )

10: update covariance matrices( )
11: until labels converged( ) or max iter reached( )
12: return {mk}k=1,...,K , {Σk}k=1,...,K

13: end function

This algorithm returns K means mk and covariance matrices Σk which
describe the distribution within each cluster. To find the optimal K, the algo-
rithm is run for different values of K and a cost function which sums up the
areas of the covariance ellipses and penalizes large values of K (Occam’s razor)
is minimized:

Kopt = arg min
K

K∑
k=1

det(Σk) + a · exp(b · K). (13)

We determined the values of the parameters in our experiments to be

a ≈ 2.5 · det(Σ0) and b ≈ 0.5, (14)

where det(Σ0) is the area of the covariance ellipse in the case of only one cluster
(K = 1).

2.5 Multiresolution

Since the estimation of a relative displacement of the signal in two regarded
patches is limited by the patch size6 and works best when most of the image
content is present in both patches, the previously presented steps are performed
iteratively on different resolution scales of the image. We employed a Gaussian
pyramid with two levels and a scaling of 2 for each image dimension. We used
the same patch size on both pyramid levels, performed a first motion estimation
on the upper (=lower resolution) pyramid level and transferred the result to the
original scale by shifting the patch windows relative to each other according to
the (correctly scaled) motion vector determined in the upper pyramid level. This
way we ensure that we can deal also with large displacements.

6 Displacements of at most half the patch size are detectable.
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3 Experiments

Our enhanced PhC approach allows us to estimate multiple motion distributions.
The proposed method is evaluated at the optical flow dataset from the KITTI
Vision Benchmark Suite [22] and the Middlebury Stereo Dataset [3]. Due to
the fact that the PhC, by construction, aims at determining the distribution of
motion vectors but not a dense motion field, we could not apply the metrics
of these benchmarks which expect a dense motion field. Therefore we can only
compare our method against the PhC implementation of OpenCV, which is
based on the work of Stone et al. [16], and the ground truth data of the training
datasets of the two mentioned benchmarks.

3.1 Middlebury Stereo Dataset

In this experiment, we intend to show that our proposed approach is able to
estimate multiple motions within a defined patch. We also want to demonstrate
that these estimates are correct and precise. However, PhC is of course only able
to detect motions if the moving objects show enough structure. Therefore, we
chose the dataset from 2001 as its images exhibit well structured elements.

The 6 image pairs of this stereo dataset are divided into 6 centered patches,
each of size 128×128 pixels. These patches are shown as black rectangles in Fig. 2.
Since this dataset was originally created for a stereo benchmark, the images are
recorded by a left and right camera. Thus we can assume that the captured
scene is only translated horizontally, although of course the PhC is not aware
of this. The provided disparity maps express exactly this described behavior.
Objects which are more far away from the camera exhibit a lower displacement
than objects in the near field. The disparity values (represented by the gray level
values) describe the ‘motion’ of an object between two images. For example, two
different motions are present in the first patch of the disparity map 2a. The aim
of this experiment is to detect exactly these multiple motions within a patch.
The total quantity of available displacements of all patches of a specific image
pair is listed in the second column of Table 1. Another aspect which has to be
considered is that the objects do not necessarily lie in a frontal plane w.r.t. the
camera and hence the translation of the object cannot be described with one
single disparity value. This means that we observe disparity value ranges, not
singular values. In our experiment, we computed all such ranges in each patch,
which serve as ground truth ranges.

For each patch we executed our enhanced PhC algorithm. The results are
shown in Table 1, where they are compared against the OpenCV version of the
PhC. Obviously our enhanced PhC is able to estimate a significantly larger
amount of motions than the OpenCV PhC. Moreover, the calculated displace-
ments are more precise and more reliable than the OpenCV ones. We estimated
every single detected motion correctly, which means that our computed displace-
ments fall within the above stated range of ground truth data. In contrast to
that, the OpenCV version does not determine all its detected motions correctly,
as it can be seen in the last column of Table 1.
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(a) Barn 1 (b) Barn 2 (c) Bull

(d) Poster (e) Sawtooth (f) Venus

Fig. 2. All disparity maps from the Middlebury Stereo Dataset 2001 [3] divided into
patches. In each patch, the estimated motion is encoded by a colored line. Note: The
length of the line (respectively the motion) is scaled by a factor of two for better
visualization.

Table 1. We compare the quantity of right estimated motions by our and the OpenCV
PhC [16] w.r.t. the occurring motions within each dataset.

Dataset # gt. motions est. motions correct est. motions

OpenCV our PhC OpenCV our PhC

Barn 1 15 40 % 67 % 100 % 100 %

Barn 2 13 46 % 77 % 83 % 100 %

Bull 11 54 % 63 % 83 % 100 %

Poster 19 32 % 47 % 100 % 100 %

Sawtooth 13 46 % 54 % 100 % 100 %

Venus 13 46 % 62 % 100 % 100 %

Overall 84 44 % 62 % 94 % 100 %

Using the Middlebury Stereo Dataset, we showed that our enhanced PhC can
detect and correctly estimate multiple motions within a patch if the individual
objects possess enough structure and cover a reasonable percentage of the patch.

3.2 KITTI Optical Flow Dataset

In the second part of our experiments, we use real world driving scenes and
show that our algorithm outperforms the OpenCV PhC in terms of precision
and reliability and also simultaneously measures the uncertainties of the esti-
mated motions. Furthermore we show that our four self-diagnostic checks are
both useful and work correctly. For the evaluation of our new approach, we
took all 194 image pairs from the KITTI Optical Flow Training Dataset [22].
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Fig. 3. 6 exemplary results taken from the KITTI Training Dataset which show the
performance of our method. The colored lines indicate the length of estimate motions.
A red overlay on a patch indicates that one of our checks yielded a negative result and
thus no reliable and precise motion estimation is possible.

We did not evaluate our PhC method on the Test Dataset, because ground truth
data is not available and the benchmark only accepts sparse or dense motion
fields. We cannot provide this because we can only estimate motion distribution
within a defined patch. For that reason we analyze the performance of our PhC
by dividing each image into 45 non-overlapping patches of 128 × 64 pixels (cf.
Fig. 3) and compare the results of our PhC against the ones from OpenCV and
the ground truth from the training dataset. Unfortunately, KITTI does not pro-
vide ground truth for the entire image because their LIDAR scanner has only a
limited field of view. This is why we could only do the evaluation on 6942 of the
8730 possible patches. The KITTI data provides an almost dense motion field
within a patch, but we can only compare motion distributions characterized by
a mean mn,gt and a covariance matrix Σn,gt. Therefore, we determine the para-
meters of the motion distribution from the ground truth data for the patches
{cn}n=1,...,3752 where K motions xi occur in a patch cn, in the following way:

m̂n,gt =
1
K

K∑
i=1

xi and Σ̂n,gt =
1

K − 1

K∑
i=1

(xi − m̂n,gt)(xi − m̂n,gt)T . (15)

With the described self-diagnosis checks, we determined that on 3752 of the 6942
patches, the PhC can provide a reliable motion estimate. On the other patches,
one of our proposed checks failed due to low structure, too much noise or too
different image patches caused by large displacements. In the Fig. 4a and b, the
ordered displacements in horizontal respectively vertical direction are shown for
all possible patches. These plots show that our PhC is located much closer to
the trend of the ground truth than the OpenCV implementation. Many of the
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motions computed by OpenCV are either outliers or lie close to the zero line.
As opposed to this our PhC produces only a few outliers. Consider to the given
integer precision, our results comply well to the ground truth.
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Fig. 4. Ordered horizontal and vertical displacements which occur through the 3752
patches where ground truth data and a motion estimate is available.

In the last part of this experiment, we want to show that our motion distrib-
ution parameters7 are well estimated. We chose a relatively pessimistic approach
by evaluating mn,eval and Σn,eval for each patch cn in the following way:

mn,eval = m̂n,gt − mn,k,PhC and Σn,eval = Σ̂n,gt + Σn,k,PhC . (16)

Figure 5a and b show the histogram of the euclidean lengths of the deviation
{m}n=1,...,3752,eval between the ground truth and our PhC and the OpenCV
PhC respectively. The results show that our PhC provides fewer estimates than
the OpenCV PhC, simply because we recognize patches where no reliable motion
estimate is possible. Secondly, slightly more displacements are estimated cor-
rectly, as it can be seen in histogram bins [0, 5]. However, the main advantage of
our PhC is that only very few estimates deviate more than 30 pixels to the ground
truth. The OpenCV PhC, on the other hand, yields more than 2000 motion esti-
mates which exhibit a deviation of more than 30 pixels w.r.t the ground truth. To
evaluate the uncertainty of the estimate, expressed by the ‘size’ of the covariance
matrix, we compute the area An of Σn,eval as An = det(Σn,eval), which corre-
sponds to the 1σ-area covered by the covariance ellipse. Figure 5c shows the
histogram of {A}n=1,...,3752. Some motions have a relatively high uncertainty
(large An), but most of the estimated motion distributions are compact (small
An), which means that their displacements are reliable and precise.

We have evaluated our work on two different datasets. The performance of our
enhanced PhC clearly outperforms the OpenCV one. We achieve good estimates
of motion distributions if the moving objects possess enough structure and cover
a significant part of the patch. As already stated, the purpose of our approach is
7 We do not assume any specific probability distribution.



378 M. Ochs et al.

Euclidean length of the estimated motion [px]
0 5 10 15 20 25 ≥ 30

F
re

qu
en

cy

0

500

1000

1500

2000

2500
Histogram of estimated motions with our PhC

(a) Our PhC

Euclidean length of the estimated motion [px]
0 5 10 15 20 25 ≥ 30

F
re

qu
en

cy

0

500

1000

1500

2000

2500
Histogram of estimated motions with OpenCV PhC

(b) OpenCV PhC

Surface area of the joint covariance ellipse [px*px]
0 10 20 30 40 ≥ 50

F
re

qu
en

cy

0

200

400

600

800

1000

1200

1400

1600

1800

2000
Histogram of surface area of the joint covariance ellipse

(c) Histogram of surface area

Fig. 5. In the Figs. 5a and b, the euclidean length of the deviation between the ground
truth and the estimated motions of two used PhCs is shown. Figure 5c shows the 1σ-
area covered by the covariance ellipse of the PhC result.

not to compute a dense optical flow field, but to estimate the dominant motions
and their uncertainties. The particular advantage of our approach is that we
achieve with very moderate computational effort reliable information about the
distribution of the optical flow vectors within a patch - including the case of
multiple motions. The runtime of our PhC is roughly 1 ms for a 256 × 256 pixel
patch without any use of multithreading and GPU support on a common PC.

4 Summary and Conclusion

We have shown that the classical PhC method can be made significantly more
robust against different sources of malfunction. This has been achieved by a
systematic analysis of the effects of noise and the conditioning of the input
data (texture, similarity). Obviously, the spatial precision of the method can be
extended into the subpixel range by using existing schemes for providing sub-
pixel resolution to phase correlation [11–13]. This, however, is independent from
the method improvements presented here. We refrained from using any of these
schemes in order to present the effects of our modifications in ‘clean room condi-
tions’, unaffected by other modifications. We emphasize that the standard PhC
is a good motion estimator for patches with a homogeneous translational motion
field, whereas our extended PhC provides distributions for multiple motions in
a patch which can be used for local methods that need a good initialization.
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