Abstract
The use of Physically Unclonable Functions (PUFs) in cryptographic protocols attracted an increased interest over recent years. Since sound security analysis requires a concise specification of the alleged properties of the PUF, there have been numerous trials to provide formal security models for PUFs. However, all these approaches have been tailored to specific types of applications or specific PUF instantiations. For the sake of applicability, composability, and comparability, however, there is a strong need for a unified security model for PUFs (to satisfy, for example, a need to answer whether a future protocol requirements match a new and coming PUF realization properties).
In this work, we propose a PUF model which generalizes various existing PUF models and includes security properties that have not been modeled so far. We prove the relation between some of the properties, and also discuss the relation of our model to existing ones.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
We do not limit the number of physical attacks the adversary can mount as defined in [17]. Instead, the pamter-resilience assures there is no extra information is leaked by the physical attacks.
References
Armknecht, F., Maes, R., Sadeghi, A., Standaert, F., Wachsmann, C.: A formalization of the security features of physical functions. In: IEEE S&P 2011, pp. 397–412. IEEE Computer Society (2011)
Armknecht, F., Maes, R., Sadeghi, A.-R., Sunar, B., Tuyls, P.: Memory leakage-resilient encryption based on physically unclonable functions. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 685–702. Springer, Heidelberg (2009)
Bösch, C., Guajardo, J., Sadeghi, A.-R., Shokrollahi, J., Tuyls, P.: Efficient helper data key extractor on FPGAs. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 181–197. Springer, Heidelberg (2008)
Boureanu, I., Ohkubo, M., Vaudenay, S.: The limits of composable crypto with transferable setup devices. In: Bao, F., Miller, S., Zhou, J., Ahn, G. (eds.) ASIACCS 2015, pp. 381–392. ACM (2015)
Boyen, X.: Reusable cryptographic fuzzy extractors. In: Atluri, V., Pfitzmann, B., McDaniel, P.D. (eds.) ACMCCS 2004, pp. 82–91. ACM (2004)
Brzuska, C., Fischlin, M., Schröder, H., Katzenbeisser, S.: Physically uncloneable functions in the universal composition framework. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 51–70. Springer, Heidelberg (2011)
Busch, H., Katzenbeisser, S., Baecher, P.: PUF-based authentication protocols – revisited. In: Youm, H.Y., Yung, M. (eds.) WISA 2009. LNCS, vol. 5932, pp. 296–308. Springer, Heidelberg (2009)
Dachman-Soled, D., Fleischhacker, N., Katz, J., Lysyanskaya, A., Schröder, D.: Feasibility and infeasibility of secure computation with malicious PUFs. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part II. LNCS, vol. 8617, pp. 405–420. Springer, Heidelberg (2014)
Delvaux, J., Gu, D., Peeters, R., Verbauwhede, I.: A survey on lightweight entity authentication with strong PUFs. IACR Cryptology ePrint Archive, p. 977 (2014)
van Dijk, M., RĂĽhrmair, U.: Physical unclonable functions in cryptographic protocols: security proofs and impossibility results. Cryptology ePrint Archive, Report 2012/228 (2012)
Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.: Fuzzy extractors: how to generate strong keys from biometrics and other noisy data. SIAM J. Comput. 38(1), 97–139 (2008)
Gassend, B., Clarke, D.E., van Dijk, M., Devadas, S.: Silicon physical random functions. In: Atluri, V. (ed.) ACMCCS 2002, pp. 148–160. ACM (2002)
Guajardo, J., Kumar, S.S., Schrijen, G.-J., Tuyls, P.: FPGA intrinsic PUFs and their use for IP protection. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 63–80. Springer, Heidelberg (2007)
Hammouri, G., Sunar, B.: PUF-HB: a tamper-resilient HB based authentication protocol. In: Bellovin, S.M., Gennaro, R., Keromytis, A.D., Yung, M. (eds.) ACNS 2008. LNCS, vol. 5037, pp. 346–365. Springer, Heidelberg (2008)
Håstad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator from any one-way function. SIAM J. Comput. 28(4), 1364–1396 (1999)
Hofer, M., Boehm, C.: An alternative to error correction for SRAM-like PUFs. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 335–350. Springer, Heidelberg (2010)
Kardas, S., Celik, S., Bingöl, M.A., Kiraz, M.S., Demirci, H., Levi, A.: k-strong privacy for radio frequency identification authentication protocols based on physically unclonable functions. Wire;. Commun. Mob. Comput 15, 2150–2166 (2013)
Katzenbeisser, S., Kocabaş, U., Rožić, V., Sadeghi, A.-R., Verbauwhede, I., Wachsmann, C.: PUFs: myth, fact or busted? A security evaluation of physically unclonable functions (PUFs) cast in silicon. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 283–301. Springer, Heidelberg (2012)
Krishna, A.R., Narasimhan, S., Wang, X., Bhunia, S.: MECCA: a robust low-overhead PUF using embedded memory array. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 407–420. Springer, Heidelberg (2011)
Maes, R.: Physically Unclonable Functions - Constructions, Properties and Applications. Springer, Heidelberg (2013)
Maes, R., Van Herrewege, A., Verbauwhede, I.: PUFKY: a fully functional PUF-based cryptographic key generator. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 302–319. Springer, Heidelberg (2012)
Maes, R., Tuyls, P., Verbauwhede, I.: Low-overhead implementation of a soft decision helper data algorithm for SRAM PUFs. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 332–347. Springer, Heidelberg (2009)
Majzoobi, M., Rostami, M., Koushanfar, F., Wallach, D.S., Devadas, S.: Slender PUF protocol: a lightweight, robust, and secure authentication by substring matching. In: IEEE S&P 2012, pp. 33–44. IEEE Computer Society (2012)
Oren, Y., Sadeghi, A.-R., Wachsmann, C.: On the effectiveness of the remanence decay side-channel to clone memory-based PUFs. In: Bertoni, G., Coron, J.-S. (eds.) CHES 2013. LNCS, vol. 8086, pp. 107–125. Springer, Heidelberg (2013)
Ostrovsky, R., Scafuro, A., Visconti, I., Wadia, A.: Universally composable secure computation with (malicious) physically uncloneable functions. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 702–718. Springer, Heidelberg (2013)
Pappu, R.: Physical one-way functions. PhD thesis, MIT (2001)
Rührmair, U., van Dijk, M.: Pufs in security protocols: attack models and security evaluations. In: IEEE S&P 2013, pp. 286–300. IEEE Computer Society (2013)
Rührmair, U., Sehnke, F., Sölter, J., Dror, G., Devadas, S., Schmidhuber, J.: Modeling attacks on physical unclonable functions. In: Al-Shaer, E., Keromytis, A.D., Shmatikov, V. (eds.) ACMCCS 2010, pp. 237–249. ACM (2010)
Sadeghi, A., Visconti, I., Wachsmann, C.: PUF-enhanced RFID security and privacy. In: SECSI (2010), pp. 366–382 (2010)
Saha, I., Jeldi, R.R., Chakraborty, R.S.: Model building attacks on physically unclonable functions using genetic programming. In: HOST 2013, pp. 41–44. IEEE Computer Society (2013)
Tuyls, P., Skoric, B.: Strong authentication with physical unclonable functions. In: Petkovic, M., Jonker, W. (eds.) Security, Privacy, and Trust in Modern Data Management, pp. 133–148. Springer, Heidelberg (2007)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Armknecht, F., Moriyama, D., Sadeghi, AR., Yung, M. (2016). Towards a Unified Security Model for Physically Unclonable Functions. In: Sako, K. (eds) Topics in Cryptology - CT-RSA 2016. CT-RSA 2016. Lecture Notes in Computer Science(), vol 9610. Springer, Cham. https://doi.org/10.1007/978-3-319-29485-8_16
Download citation
DOI: https://doi.org/10.1007/978-3-319-29485-8_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-29484-1
Online ISBN: 978-3-319-29485-8
eBook Packages: Computer ScienceComputer Science (R0)