Skip to main content

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 427))

Abstract

The presented paper exploits optimization and simulation tools of the MATLAB environment to design a robust control system in case of limitations on the controller’s manipulated variable. The design is based on the polynomial approach resulting in the pole-placement problem to be solved. This is addressed numerically by means of the standard MATLAB functions for nonlinear constrained optimization to meet both robustness of the designed loop and constraints on the control input. For this purpose, convenient performance criteria are suggested together with a procedure for the optimization. Presented results of constrained robust control for the AMIRA servo-system show potential of the suggested methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stein, G.: Respect the unstable. IEEE Control Syst. Mag. 23(4), 12–25 (2003)

    Article  Google Scholar 

  2. Saberi, A., Stoorvogel, A.A., Sannuti, P.: Control of Linear Systems with Regulation and Input Constraints. Springer, London (2000)

    Book  MATH  Google Scholar 

  3. Glattfelder, A.H., Schaufelberger, W.: Control Systems with Input and Output Constraints. Springer, London (2003)

    Book  MATH  Google Scholar 

  4. Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2004)

    MATH  Google Scholar 

  5. De Doná, J.A., Goodwin, G.C., Seron, M.M.: Anti-windup and model predictive control: reflections and connections. Eur. J. Control 6(5), 467–477 (2000)

    Article  MATH  Google Scholar 

  6. Campo, P.J., Morari, M.: Robust control of processes subject to saturation nonlinearities. Comput. Chem. Eng. 14(4–5), 343–358 (1990)

    Article  Google Scholar 

  7. Miyamoto, S., Vinnicombe, G.: Robust control of plants with saturation nonlinearity based on coprime factor representations. In: 35th IEEE Conference on Decision and Control, pp. 2838–2840. Japan (1996)

    Google Scholar 

  8. Huba, M.: Robust constrained PID control. In: International Conference Cybernetics and Informatics, pp. 1–18. Vyšná boca, Slovak Republic (2010)

    Google Scholar 

  9. Vozák, D., Veselý, V.: Stable predictive control with input constraints based on variable gain approach. Int. Rev. Autom. Control 7(2), 131–139 (2014)

    Article  Google Scholar 

  10. Torchani, B., Sellami, A., Garcia, G.: Robust sliding mode control of class of linear uncertain saturated systems. Int. Rev. Autom. Control 6(2), 134–146 (2013)

    Google Scholar 

  11. Kučera, V.: Diophantine equations in control—a survey. Automatica 29, 1361–1375 (1993)

    Article  MATH  Google Scholar 

  12. Hunt, K.J.: Polynomial methods in optimal control and filtering. Peter Peregrinus Ltd., London (1993)

    Book  MATH  Google Scholar 

  13. Anderson, B.D.O.: From Youla-Kucera to identification, adaptive and nonlinear control. Automatica 34, 1485–1506 (1998)

    Article  MATH  Google Scholar 

  14. Kučera, V.: The pole placement equation. A survey. Kybernetika 30(6), 578–584 (1994)

    MATH  Google Scholar 

  15. Bobál, V., Kubalčík, M., Chalupa, P., Dostál, P.: Self-tuning control of nonlinear servo system: comparison of LQ and predictive approach. In: 17th Mediterranaen Conference on Control and Automation, pp. 240–245. Thessaloniki, Greece (2009)

    Google Scholar 

  16. Roubal, J., Augusta, P., Havlena, V.: A brief introduction to control design demonstrated on laboratory model servo DR300—AMIRA. Acta Electrotechnica et Informatica 5(4), 1–6 (2005)

    Google Scholar 

  17. Gazdoš, F., Marholt, J.: Robust process control with saturated control input. In: 28th European Conference on Modelling and Simulation, pp. 285–291. Brescia, Italy (2014)

    Google Scholar 

  18. Gazdoš, F., Marholt, J.: Simulation approach to robust constrained control. Int. Rev. Autom. Control 7(5), 578–584 (2014)

    Google Scholar 

  19. Skogestad, S., Postlethwaite, I.: Multivariable Feedback Control: Analysis and Design. Wiley, Chichester (2005)

    Google Scholar 

  20. Coleman, T.F., Li, Y.: An interior, trust region approach for nonlinear minimization subject to bounds. SIAM J. Optim. 6, 418–445 (1996)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frantisek Gazdos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Gazdos, F. (2016). Optimization of Closed-Loop Poles for Limited Control Action and Robustness. In: Abraham, A., Wegrzyn-Wolska, K., Hassanien, A., Snasel, V., Alimi, A. (eds) Proceedings of the Second International Afro-European Conference for Industrial Advancement AECIA 2015. Advances in Intelligent Systems and Computing, vol 427. Springer, Cham. https://doi.org/10.1007/978-3-319-29504-6_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29504-6_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29503-9

  • Online ISBN: 978-3-319-29504-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics