Abstract
Although different satisfiability decision procedures can be combined by algorithms such as those of Nelson-Oppen or Shostak, current tools typically can only support a finite number of theories to use in such combinations. To make SMT solving more widely applicable, generic satisfiability algorithms that can allow a potentially infinite number of decidable theories to be user-definable, instead of needing to be built in by the implementers, are highly desirable. This work studies how folding variant narrowing, a generic unification algorithm that offers good extensibility in unification theory, can be extended to a generic variant-based satisfiability algorithm for the initial algebras of its user-specified input theories when such theories satisfy Comon-Delaune’s finite variant property (FVP) and some extra conditions. Several, increasingly larger infinite classes of theories whose initial algebras enjoy decidable variant-based satisfiability are identified and illustrated with examples.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Roughly, u is an E, B-variant of a term t if u is the E, B-canonical form of a substitution instance, \(t \theta \), of t (for a more careful definition see Definition 5). Therefore, the variants of t are intuitively the “irreducible patterns” to which t can be symbolically evaluated by the rules E modulo B. \(E \uplus B\) has the finite variant property if there is a finite set of most general variants, which are computed by folding variant narrowing.
- 2.
- 3.
Such decidable QF satisfiability is of course equivalent to the decidability of whether a sentence in the existential closure of such QF formulas belongs to the theory of \(T_{\varSigma /E'}\), which is how the decidability property is actually stated in [31].
- 4.
By the assumption that \(\varSigma \)’s poset of sorts \((S,\leqslant )\) is locally finite, up to variable renaming the specializations of a finite set of variables form always a finite set. When \(\phi ' \gamma \not \in T_{\varOmega ^{\wedge }}(X)\) we may still have \(\phi ' \gamma \rho \in T_{\varOmega ^{\wedge }}(X)\) for some variable specialization \(\rho \) because a constructor symbol \(f:w \rightarrow s\) may have a subsort-overloaded typing \(f:w' \rightarrow s'\) that is not a constructor but a defined symbol (see Footnote 5 below for an example).
- 5.
The following example illustrates all the issues involved. In the FVP decomposition \(\mathcal {Z}_{+}\) of the integers with addition of Example 10 in Sect. 6.2, the signature \(\varOmega \) of constructors contains two typings for \(+\), namely, \(\_+\_ : Nat \; Nat \rightarrow Nat \) and \(\_+\_ : NzNat \; NzNat \rightarrow NzNat \), with \( NzNat \) the subsort of non-zero naturals, and both operations associative-commutative, and having 0 as unit element (\( ACU \)). Instead, the typing \(\_+\_ : Int \; Int \rightarrow Int \) (also ACU) is not a constructor, but a function defined by equations. Let \(\phi \) be the equation \(x+y=x'+y'\), where all variables have sort \( Int \). It has the variant \((x+y=x'+y', id )\), and \(\gamma =\{x \mapsto x',y \mapsto y'\}\) is one of the ACU-unifiers of \(x+y=x'+y'\). Case (1) fails because \(x'+y'\) is not an \(\varOmega \)-term. However, the variable specialization \(\rho =\{x' \mapsto x''\!:\! Nat ,y' \mapsto y''\!:\! Nat \}\) yields the constructor unifier \( id \gamma \rho = \{x \mapsto x''\!:\! Nat ,y \mapsto y''\!:\! Nat , x' \mapsto x''\!:\! Nat ,y' \mapsto y''\!:\! Nat \}\) because now \( x''\!:\! Nat +y''\!:\! Nat \) is an \(\varOmega \)-term (property (ii) holds) and property (iii) also holds. Furthermore, \(\rho \) is maximal with properties (ii) and (iii). For example, \(\rho > \tau \) for \(\tau =\{x' \mapsto x'''\!:\! NzNat ,y' \mapsto y'''\!:\! NzNat \}\), so that the less general unifier \( id \gamma \tau \) is unnecessary.
- 6.
Using a lazy \( DPLL (T)\) solver (see, e.g., [13]) we do not have to assume that \(\varphi \) is in DNF: the \( DPLL (T)\) solver will efficiently extract from \(\varphi \) the appropriate conjunctions of T-literals to check for satisfiability.
- 7.
A complete set of constructor variants for a term t is obtained by inspecting each \((u,\theta ) \in [\![t ]\!]_{R,B}\) and either: (1) choosing \((u,\theta )\) when \(u \in T_{\varOmega }(X)\), or otherwise (2) choosing those \((u\rho ,\theta \rho )\) such that \(\rho \) is a variable specialization and: (i) \(u \rho \in T_{\varOmega }(X)\), (ii) \((u\rho ,\theta \rho )\) is a variant of t, and (iii) \(\rho \) is maximal with properties (i)–(ii).
- 8.
An order-sorted version \(\mathcal {N}_{+}\) of \(\mathcal {N}^{u}_{+}\) is obtained by adding a subsort inclusion \( NzNat < Nat \), where \( NzNat \) denotes the non-zero naturals, typing 1 with sort \( NzNat \), and adding the typing \(\_+\_ : NzNat \; NzNat \rightarrow NzNat \). \(\mathcal {N}_{+}\) is also OS-compact for the exact same reasons. A reduction of satisfiability in the initial agebra of \(\mathcal {N}_{+}\) to satisfiability in the initial algebra of \(\mathcal {N}^{u}_{+}\) is discussed in [69]. \(\mathcal {N}_{+}\) makes the language more expressive: instead of stating \(x \not = 0\) we can just type x as having sort \( NzNat \).
- 9.
See [69] for a version \(\mathcal {N}_{+,>}\) of natural Pressburger arithmetic in which \(>\) is only explictly defined in the positive case.
- 10.
Note the interesting phenomenon, impossible in a many-sorted setting, that a subsort-polymorphic symbol like s or p can be a constructor for some typings and a defined symbol for other typings.
- 11.
See [69] for an even simpler version \(\mathcal {Z}_{+,>}\) of integer Presburger arithmetic in which \(>\) is only explicitly defined in the positive case.
- 12.
This violates the general assumption that sorts are non-empty; however, parameter sorts instantiated to target theories with non-empty sorts become non-empty.
- 13.
There is no real loss of generality because we can make it so by renaming its sorts and operations. In fact, disjointness must in any case be enforced by the “pushout construction” for parameter instantiation, implicitly described in what follows for this simple class of uni-parametric parameterized theories.
- 14.
For more details about sufficient completeness of parameterized OS theories and methods for checking it see [67].
- 15.
For combining variant-based decision procedures with other decision procedures, the order-sorted NO combination method in [82] will be particulary useful.
References
Alpuente, M., Escobar, S., Iborra, J.: Termination of narrowing revisited. Theor. Comput. Sci. 410(46), 4608–4625 (2009)
Alpuente, M., Escobar, S., Iborra, J.: Modular termination of basic narrowing and equational unification. Log. J. IGPL 19(6), 731–762 (2011)
Aoto, T., Stratulat, S.: Decision procedures for proving inductive theorems without induction. In: Proceedings of PPDP2014, pp. 237–248. ACM (2014)
Armando, A., Bonacina, M.P., Ranise, S., Schulz, S.: New results on rewrite-based satisfiability procedures. ACM Trans. Comput. Log. 10(1) (2009)
Armando, A., Castellini, C., Giunchiglia, E.: SAT-based procedures for temporal reasoning. In: Biundo, S., Fox, M. (eds.) ECP 1999. LNCS, vol. 1809, pp. 97–108. Springer, Heidelberg (2000)
Armando, A., Ranise, S., Rusinowitch, M.: A rewriting approach to satisfiability procedures. Inf. Comput. 183(2), 140–164 (2003)
Audemard, G., Bertoli, P.G., Cimatti, A., Kornilowicz, A., Sebastiani, R.: A SAT based approach for solving formulas over boolean and linear mathematical propositions. In: Voronkov, A. (ed.) CADE 2002. LNCS (LNAI), vol. 2392, pp. 195–210. Springer, Heidelberg (2002)
Baader, F., Schulz, K.: Unification in the union of disjoint equational theories: combining decision procedures. J. Symbolic Comput. 21, 211–243 (1996)
Baader, F., Schulz, K.U.: Combination techniques and decision problems for disunification. Theor. Comput. Sci. 142(2), 229–255 (1995)
Baader, F., Schulz, K.U.: Combining constraint solving. In: Comon, H., Marché, C., Treinen, R. (eds.) CCL 1999. LNCS, vol. 2002, pp. 104–158. Springer, Heidelberg (2001)
Bae, K., Meseguer, J.: Infinite-state model checking of LTLR formulas using narrowing. In: Escobar, S. (ed.) WRLA 2014. LNCS, vol. 8663, pp. 113–129. Springer, Heidelberg (2014)
Barrett, C., Shikanian, I., Tinelli, C.: An abstract decision procedure for satisfiability in the theory of inductive data types. J. Satisfiability Boolean Model. Comput. 3, 21–46 (2007)
Barrett, C., Tinelli, C.: Satisfiability modulo theories. In: Clarke, E., Henzinger, T., Veith, H. (eds.) Handbook of Model Checking. Springer (2017, to appear)
Barrett, C.W., Dill, D.L., Stump, A.: Checking satisfiability of first-order formulas by incremental translation to SAT. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 236–249. Springer, Heidelberg (2002)
Basin, D.A., Ganzinger, H.: Automated complexity analysis based on ordered resolution. J. ACM 48(1), 70–109 (2001)
Bobot, F., Conchon, S., Contejean, E., Lescuyer, S.: Implementing polymorphism in SMT solvers. In: Proceedings of 6th International Workshop on Satisfiability Modulo Theories and 1st International Workshop on Bit-Precise Reasoning. SMT 2008/BPR 2008, pp. 1–5. ACM (2008)
Bonacina, M.P., Echenim, M.: On variable-inactivity and polynomial \({\cal {T}}\)-satisfiability procedures. J. Log. Comput. 18(1), 77–96 (2008)
Lynch, C., Gero, K.A., Narendran, P., Bouchard, C.: On forward closure and the finite variant property. In: Fontaine, P., Ringeissen, C., Schmidt, R.A. (eds.) FroCoS 2013. LNCS, vol. 8152, pp. 327–342. Springer, Heidelberg (2013)
Boudet, A.: Combining unification algorithms. J. Symb. Comput. 16(6), 597–626 (1993)
Bradley, A.R., Manna, Z.: The Calculus of Computation - Decision Procedures with Applications to Verification. Springer, Heidelberg (2007)
Bryant, R.E., Lahiri, S.K., Seshia, S.A.: Modeling and verifying systems using a logic of counter arithmetic with lambda expressions and uninterpreted functions. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 78–92. Springer, Heidelberg (2002)
Chadha, R., Kremer, S., Ciobâcă, Ş.: Automated verification of equivalence properties of cryptographic protocols. In: Seidl, H. (ed.) Programming Languages and Systems. LNCS, vol. 7211, pp. 108–127. Springer, Heidelberg (2012)
Cholewa, A., Meseguer, J., Escobar, S.: Variants of variants and the finite variant property. Technical report, CS Department University of Illinois at Urbana-Champaign, February 2014. http://hdl.handle.net/2142/47117
Ciobaca, S.: Verification of composition of security protocols with applications to electronic voting. Ph.D. thesis, ENS Cachan (2011)
Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Talcott, C. (eds.): All About Maude. LNCS, vol. 4350. Springer, Heidelberg (2007)
Cohen, P.: Set Theory and the Continuum Hypothesis. W.A. Benjamin, New York (1966)
Comon, H., Dauchet, M., Gilleron, R., Löding, C., Jacquemard, F., Lugiez, D., Tison, S., Tommasi, M.: Tree automata techniques and applications (2007). http://www.grappa.univ-lille3.fr/tata. 12th October 2007
Comon, H., Lescanne, P.: Equational problems and disunification. J. Symbolic Comput. 7, 371–425 (1989)
Comon, H.: Complete axiomatizations of some quotient term algebras. Theor. Comput. Sci. 118(2), 167–191 (1993)
Comon, H., Delor, C.: Equational formulae with membership constraints. Inf. Comput. 112(2), 167–216 (1994)
Delaune, S., Comon-Lundh, H.: The finite variant property: how to get rid of some algebraic properties. In: Giesl, J. (ed.) RTA 2005. LNCS, vol. 3467, pp. 294–307. Springer, Heidelberg (2005)
Dershowitz, N., Jouannaud, J.P.: Rewrite systems. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, vol. B, pp. 243–320. North-Holland, Amsterdam (1990)
Dovier, A., Piazza, C., Rossi, G.: A uniform approach to constraint-solving for lists, multisets, compact lists, and sets. ACM Trans. Comput. Log. 9(3) (2008)
Dovier, A., Policriti, A., Rossi, G.: A uniform axiomatic view of lists, multisets, and sets, and the relevant unification algorithms. Fundam. Inf. 36(2–3), 201–234 (1998)
Dross, C., Conchon, S., Kanig, J., Paskevich, A.: Adding Decision Procedures to SMT Solvers using Axioms with Triggers. Journal of Automated Reasoning (2016) (accepted for publication). https://hal.archives-ouvertes.fr/hal-01221066
Echenim, M., Peltier, N.: An instantiation scheme for satisfiability modulo theories. J. Autom. Reasoning 48(3), 293–362 (2012)
Ehrig, H., Mahr, B.: Fundamentals of Algebraic Specification 1. Springer, Heidelberg (1985)
Eker, S.: Fast sort computations for order-sorted matching and unification. In: Agha, G., Danvy, O., Meseguer, J. (eds.) Formal Modeling: Actors, Open Systems, Biological Systems. LNCS, vol. 7000, pp. 299–314. Springer, Heidelberg (2011)
Lynch, C.A., Narendran, P., Escobar, S., Meseguer, J., Liu, Z., Santiago, S., Kapur, D., Sasse, R., Meadows, C., Erbatur, S.: Asymmetric unification: a new unification paradigm for cryptographic protocol analysis. In: Bonacina, M.P. (ed.) CADE 2013. LNCS, vol. 7898, pp. 231–248. Springer, Heidelberg (2013)
Escobar, S., Meadows, C., Meseguer, J.: Maude-NPA: cryptographic protocol analysis modulo equational properties. In: Aldini, A., Barthe, G., Gorrieri, R. (eds.) FOSAD 2007/2008/2009 Tutorial Lectures. LNCS, vol. 5705, pp. 1–50. Springer, Heidelberg (2009)
Escobar, S., Sasse, R., Meseguer, J.: Folding variant narrowing and optimal variant termination. In: Ölveczky, P.C. (ed.) WRLA 2010. LNCS, vol. 6381, pp. 52–68. Springer, Heidelberg (2010)
Escobar, S., Sasse, R., Meseguer, J.: Folding variant narrowing and optimal variant termination. J. Algebraic Log. Program. 81, 898–928 (2012)
Falke, S., Kapur, D.: Rewriting induction + Linear arithmetic = Decision procedure. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 241–255. Springer, Heidelberg (2012)
Fay, M.: First-order unification in an equational theory. In: Proceedings of the 4th Workshop on Automated Deduction, pp. 161–167 (1979)
Filliâtre, J.-C., Owre, S., Rueß, H., Shankar, N.: ICS: Integrated Canonizer and Solver. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 246–249. Springer, Heidelberg (2001)
Flanagan, C., Joshi, R., Ou, X., Saxe, J.B.: Theorem proving using lazy proof explication. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 355–367. Springer, Heidelberg (2003)
Gallier, J.H., Snyder, W.: Complete sets of transformations for general E-unification. Theor. Comput. Sci. 67(2–3), 203–260 (1989). http://dx.doi.org/10.1016/0304-3975(89)90004--2
Giesl, J., Kapur, D.: Decidable classes of inductive theorems. In: Goré, R.P., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083, pp. 469–484. Springer, Heidelberg (2001)
Giesl, J., Kapur, D.: Deciding inductive validity of equations. In: Baader, F. (ed.) CADE 2003. LNCS (LNAI), vol. 2741, pp. 17–31. Springer, Heidelberg (2003)
Goguen, J., Burstall, R.: Institutions: abstract model theory for specification and programming. J. ACM 39(1), 95–146 (1992)
Goguen, J., Meseguer, J.: Order-sorted algebra I. Theor. Comput. Sci. 105, 217–273 (1992)
Goguen, J., Meseguer, J.: Models and equality for logical programming. In: Ehrig, H., Kowalski, R., Levi, G., Montanari, U. (eds.) TAPSOFT’87. LNCS, vol. 250, pp. 1–22. Springer, Heidelberg (1987)
Escobar, S., Meseguer, J., Santiago, S., Meadows, C., González-Burgueño, A.: Analysis of the IBM CCA security API protocols in Maude-NPA. In: Chen, L., Mitchell, C. (eds.) SSR 2014. LNCS, vol. 8893, pp. 111–130. Springer, Heidelberg (2014)
Gramlich, B.: Modularity in term rewriting revisited. Theor. Comput. Sci. 464, 3–19 (2012)
Hendrix, J., Meseguer, J., Clavel, M.: A sufficient completeness reasoning tool for partial specifications. In: Giesl, J. (ed.) RTA 2005. LNCS, vol. 3467, pp. 165–174. Springer, Heidelberg (2005)
Meseguer, J., Ohsaki, H., Hendrix, J.: A sufficient completeness checker for linear order-sorted specifications modulo axioms. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 151–155. Springer, Heidelberg (2006)
Hullot, J.M.: Canonical forms and unification. In: Bibel, W., Kowalski, R. (eds.) 5th Conference on Automated Deduction. LNCS, vol. 87, pp. 318–334. Springer, Heidelberg (1980)
Jouannaud, J.P., Kirchner, C., Kirchner, H.: Incremental construction of unification algorithms in equational theories. In: Diaz, J. (ed.) Automata, Languages and Programming. LNCS, vol. 154, pp. 361–373. Springer, Heidelberg (1983)
Jouannaud, J.P., Kirchner, H.: Completion of a set of rules modulo a set of equations. SIAM J. Comput. 15, 1155–1194 (1986)
Kapur, D., Narendran, P.: Complexity of unification problems with associative-commutative operators. J. Autom. Reasoning 9(2), 261–288 (1992)
Ringeissen, C., Tran, D.-K., Ranise, S., Kirchner, H.: On superposition-based satisfiability procedures and their combination. In: Van Hung, D., Wirsing, M. (eds.) ICTAC 2005. LNCS, vol. 3722, pp. 594–608. Springer, Heidelberg (2005)
Krstić, S., Goel, A., Tinelli, C., Grundy, J.: Combined satisfiability modulo parametric theories. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 602–617. Springer, Heidelberg (2007)
Lynch, C., Morawska, B.: Automatic decidability. In: Proceedings of LICS 2002, p. 7. IEEE Computer Society (2002)
Tran, D.-K., Lynch, C.: Automatic decidability and combinability revisited. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 328–344. Springer, Heidelberg (2007)
Maher, M.J.: Complete axiomatizations of the algebras of finite, rational and infinite trees. In: Proceedings of LICS 1988, pp. 348–357. IEEE Computer Society (1988)
Meseguer, J.: Membership algebra as a logical framework for equational specification. In: Parisi-Presicce, F. (ed.) WADT 1997. LNCS, vol. 1376, pp. 18–61. Springer, Heidelberg (1998)
Meseguer, J.: Order-sorted parameterization and induction. In: Palsberg, J. (ed.) Semantics and Algebraic Specification. LNCS, vol. 5700, pp. 43–80. Springer, Heidelberg (2009)
Meseguer, J.: Strict coherence of conditional rewriting modulo axioms. Technical report, C.S. Department, University of Illinois at Urbana-Champaign, August 2014. http://hdl.handle.net/2142/50288
Meseguer, J.: Variant-based satisfiability in initial algebras. Technical report, University of Illinois at Urbana-Champaign, November 2015. http://hdl.handle.net/2142/88408
Meseguer, J., Goguen, J.: Order-sorted algebra solves the constructor-selector, multiple representation and coercion problems. Inf. Comput. 103(1), 114–158 (1993)
Meseguer, J., Skeirik, S.: Equational formulas and pattern operations in initial order-sorted algebras. In: Falaschi, M., et al. (eds.) LOPSTR 2015. LNCS, vol. 9527, pp. 36–53. Springer, Heidelberg (2015). doi:10.1007/978-3-319-27436-2_3
de Moura, L., Rueß, H.: Lemmas on demand for satisfiability solvers. In: Proceedings of the Fifth International Symposium on the Theory and Applications of Satisfiability Testing (SAT 2002), May 2002
Nelson, G., Oppen, D.C.: Simplification by cooperating decision procedures. ACM Trans. Program. Lang. Syst. 1(2), 245–257 (1979)
Nelson, G., Oppen, D.C.: Fast decision procedures based on congruence closure. J. ACM 27(2), 356–364 (1980)
Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theories: from an abstract Davis-Putnam-Logemann-Loveland Procedure to DPLL(T). J. ACM 53(6), 937–977 (2006)
Oppen, D.C.: Complexity, convexity and combinations of theories. Theor. Comput. Sci. 12, 291–302 (1980)
Schmidt, B., Meier, S., Cremers, C.J.F., Basin, D.A.: Automated analysis of Diffie-Hellman protocols and advanced security properties. In: Proceedings of CSF 2012, pp. 78–94. IEEE (2012)
Shostak, R.E.: Deciding combinations of theories. J. ACM 31(1), 1–12 (1984)
Slagle, J.R.: Automated theorem-proving for theories with simplifiers commutativity, and associativity. J. ACM 21(4), 622–642 (1974)
Snyder, W.: A Proof Theory for General Unification. Birkhäuser, Basel (1991)
Stump, A., Barrett, C.W., Dill, D.L., Levitt, J.R.: A decision procedure for an extensional theory of arrays. In: Proceedings of LICS 2001, pp. 29–37. IEEE Computer Society (2001)
Tinelli, C., Zarba, C.G.: Combining decision procedures for sorted theories. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229, pp. 641–653. Springer, Heidelberg (2004)
Toyama, Y.: Counterexamples to termination for the direct sum of term rewriting systems. Inf. Process. Lett. 25(3), 141–143 (1987)
Yang, F., Escobar, S., Meadows, C., Meseguer, J., Narendran, P.: Theories of homomorphic encryption, unification, and the finite variant property. In: Proceedings of PPDP 2014, pp. 123–133. ACM (2014)
Acknowledgements
I thank the organizers of FTSCS 2015 for inviting me to present these ideas in Paris, and the FTSCS participants for their interest and very helpful comments. I thank Andrew Cholewa, Steven Eker, Santiago Escobar, Ralf Sasse, and Carolyn Talcott for their contributions to the development of the theory and Maude implementation of folding variant narrowing. I have learned much about satisfiability from Maria-Paola Bonacina, Vijay Ganesh and Cesare Tinelli along many conversations; I am most grateful to them for their kind enlightenment. I also thank the following persons for their very helpful comments on earlier drafts: Maria-Paola Bonacina, Santiago Escobar, Dorel Lucau, Peter Ölveczky, Vlad Rusu, Ralf Sasse, Natarajan Shankar, and Cesare Tinelli. The pioneering work of Hubert Comon-Lundh about compact theories [29], and that of him with Stephanie Delaune about the finite variant property [31], have both been important sources of inspiration for the ideas presented here. This work has been partially supported by NSF Grant CNS 13-19109.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Meseguer, J. (2016). Variant-Based Satisfiability in Initial Algebras. In: Artho, C., Ölveczky, P. (eds) Formal Techniques for Safety-Critical Systems. FTSCS 2015. Communications in Computer and Information Science, vol 596. Springer, Cham. https://doi.org/10.1007/978-3-319-29510-7_1
Download citation
DOI: https://doi.org/10.1007/978-3-319-29510-7_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-29509-1
Online ISBN: 978-3-319-29510-7
eBook Packages: Computer ScienceComputer Science (R0)