Abstract
This paper introduces a compositional framework for analyzing the predictability of component-based embedded real-time systems. The framework utilizes automated analysis of tasks and communication architdepicts the structureectures to provide insight on the schedulability and data flow. The communicating tasks are gathered within components, making the system architecture hierarchical. The system model is given by a set of Parameterized Stopwatch Automata modeling the behavior and dependency of tasks, while we use Uppaal to analyze the predictability. Thanks to the Uppaal language, our model-based framework allows expressive modeling of the behavior. Moreover, our reconfigurable framework is customizable and scalable due to the compositional analysis. The analysis time and cost benefits of our framework are discussed through an avionic case study.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
We do not consider the criticality related features like fault tolerance for soft critical components.
References
ARINC 653. Website. https://www.arinc.com/cf/store/documentlist.cfm
Aussagues, C., Chabrol, D., David, V., Roux, D., Willey, N., Tournadre, A., Graniou, M.: PharOS, a multicore OS ready for safety-related automotive systems:results and future prospects. In: ERTS2 2010, May 2010
Behrmann, G., David, A., Larsen, K.G.: A tutorial on Uppaal. In: Bernardo, M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer, Heidelberg (2004)
Bondarev, E., Chaudron, M., de With, P.: Compositional performance analysis of component-based systems on heterogeneous multiprocessor platforms. In: SEAA 2006, pp. 81–91, August 2006
Boudjadar, A., Nyman, U., Kim, J.H., Larsen, K.G., Mikučionis, M., Skou, A., David, A.: Hierarchical scheduling framework based on compositional analysis using uppaal. In: Fiadeiro, J.L., Liu, Z., Xue, J. (eds.) FACS 2013. LNCS, vol. 8348, pp. 61–78. Springer, Heidelberg (2014)
Skou, A., Boudjadar, A., David, A., Larsen, K.G., Mikučionis, M., Nyman, U., Kim, J.H.: Widening the schedulability of hierarchical scheduling systems. In: Lanese, I., Madelaine, E. (eds.) FACS 2014. LNCS, vol. 8997, pp. 209–227. Springer, Heidelberg (2015)
Boudjadar, A., David, A., Kim, J.H., Larsen, K.G., Mikucionis, M., Nyman, U., Skou, A.: A reconfigurable framework for compositional schedulability and power analysis of hierarchical scheduling systems with frequency scaling. Sci. Comput. Program. J. 113, 236–260 (2015)
Boudjadar, A., Kim, J.H., Larsen, K.G., Nyman, U.: Compositional schedulability analysis of an avionics system using Uppaal. In: Proceedings of the International Conference on Advanced Aspects of Software Engineering ICAASE, pp. 140–147 (2014)
Cassez, F., Larsen, K.G.: The impressive power of stopwatches. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 138–152. Springer, Heidelberg (2000)
Larsen, K.G., Mikučionis, M., David, A., Legay, A.: Schedulability of herschel-planck revisited using statistical model checking. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012, Part II. LNCS, vol. 7610, pp. 293–307. Springer, Heidelberg (2012)
Deng, Z., Liu, J.W.S.: Scheduling real-time applications in an open environment. In: RTSS, pp. 308–319 (1997)
Feiler, P., Lewis, B., Vestal, S.: Improving predictability in embedded real-timesystems. Technical Report CMU/SEI-2000-SR-011, Carnegie Mellon University, December 2000
Feng, X.A., Mok, A.K.: A model of hierarchical real-time virtual resources. In: RTSS 2002, pp. 26–35. IEEE Computer Society (2002)
Fredriksson, J.: Improving predictability and resource utilization in component-based embedded real-time systems. Ph.D. thesis, Mälardalen University (2008)
Garousi, V., Briand, L.C., Labiche, Y.: A unified approach for predictability analysis of real-time systems using UML-based control flow information (2005)
Henzinger, T.A.: Two challenges in embedded systems design: predictability and robustness. Philos. Trans. R. Soc. London Math. Phy. Eng. Sci. 366(1881), 3727–3736 (2008)
Holzmann, G.: The model checker spin. IEEE Trans. Softw. Eng. 23(5), 279–295 (1997)
Hooman, J.: Specification and Compositional Verification of Real-Time Systems. LNCS. Springer, Heidelberg (1991)
Joseph, M., Pandya, P.: Finding response times in a real-time system. Comput. J. 29(5), 390–395 (1986)
Locke, C., Vogel, D., Mesler, T.: Building a predictable avionics platform in ADA: a case study. In: Proceedings of RTSS, pp. 181–189 (1991)
Panunzio, M., Vardanega, T.: A component-based process with separation of concerns for the development of embedded real-time software systems. J. Syst. Softw. 96, 105–121 (2014)
Pellizzoni, R., Betti, E., Bak, S., Yao, G., Criswell, J., Caccamo, M., Kegley, R.: A predictable execution model for COTS-based embedded systems. In: RTAS 2011, pp. 269–279, April 2011
Pfleeger, S.L., Atlee, J.M.: Software Engineering - Theory and Practice, 4th edn. Pearson Education, Upper Saddle River (2009)
Purna, K., Bhatia, D.: Temporal partitioning and scheduling data flow graphs for reconfigurable computers. IEEE Trans. Comput. 48(6), 579–590 (1999)
Stankovic, J., Ramamritham, K.: What is predictability for real-time systems? Real-Time Syst. 2(4), 247–254 (1990)
Volvo Trucks Great Britain and Ireland. Driver support systems: Keeping anextra eye on the road. http://www.volvotrucks.com/trucks/uk-market/en-gb/trucks/volvo-fh-series/key-features/Pages/driver-support-systems.aspx
Wang, F.: Efficient verification of timed automata with BDD-like data-structures. In: Zuck, L.D., Attie, P.C., Cortesi, A., Mukhopadhyay, S. (eds.) VMCAI 2003. LNCS, vol. 2575, pp. 189–205. Springer, Heidelberg (2002)
Yau, S., Zhou, X.: Schedulability in model-based software development for distributed real-time systems. In: Proceedings of WORDS 2002, pp. 45–52 (2002)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Boudjadar, A., Dingel, J., Madzar, B., Kim, J.H. (2016). Compositional Predictability Analysis of Mixed Critical Real Time Systems. In: Artho, C., Ölveczky, P. (eds) Formal Techniques for Safety-Critical Systems. FTSCS 2015. Communications in Computer and Information Science, vol 596. Springer, Cham. https://doi.org/10.1007/978-3-319-29510-7_4
Download citation
DOI: https://doi.org/10.1007/978-3-319-29510-7_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-29509-1
Online ISBN: 978-3-319-29510-7
eBook Packages: Computer ScienceComputer Science (R0)